Relazione annuale sulle acque superficiali interne

Anno 2006
INDICE

Stato di qualità ambientale dei Corsi d’acqua Superficiali della Regione Marche3
- Metodologia ...3
- Monitoraggio ...6
- Risultati ..12

Classificazione delle Acque idonee alla vita dei pesci ...19
- Monitoraggio ...19
- Risultati ..19

Monitoraggio eseguito dal Dipartimento di Pesaro ...22
- Fiume Foglia ..26
- Fiume Metauro ..33
- Fiume Cesano ..44
- Fiume Marecchia ...48
- Torrente Tavollo ...52
- Fiume Conca ...55
- Torrente Arzilda ..56

Monitoraggio eseguito dal Dipartimento di Ancona ...64
- Fiume Esino ...70
- Fiume Misa ..75
- Fiume Musone ...78

Monitoraggio eseguito dal Dipartimento di Macerata ...82
- Asta fluviale: Chienti ..83
- Asta fluviale: Potenza ..97
- Asta fluviale: Tevere ...107
- Asta fluviale: Musone ..109
- Laghi ...111
- Sedimenti fluviali ..113

Monitoraggio eseguito dal Dipartimento di Ascoli Piceno ...114
- Il bacino idrografico del fiume Tronto ...115
- Il bacino idrografico del fiume aso ...124
- Torrente Ete Vivo ...128
- Torrente Tesino ..129
Stato di qualità ambientale dei Corsi d’acqua Superficiali della Regione Marche

Metodologia

Il nuovo riferimento normativo nazionale, il recente D. Lgs. n. 152/2006 introduce nuovi standard di qualità per quanto riguarda gli inquinanti chimici (sostanze prioritarie e sostanze pericolose prioritarie) e prevede nuovi monitoraggi per i parametri biologici ed idromorfologici, in attesa che vengano definiti i criteri oggettivi per la classificazione dei corpi idrici ai sensi del nuovo decreto, il monitoraggio e la classificazione delle acque superficiali vengono effettuati sulla base di quanto previsto dal D. Lgs. n. 152/1999;

Lo stato di qualità ambientale dei corsi d’acqua (SACA) viene definito in base allo “stato ecologico”, che rappresenta la qualità della struttura e del funzionamento degli ecosistemi acquatici, e lo “stato chimico” stabilito in base alla presenza dei principali inquinanti pericolosi inorganici e di sintesi.

L’insieme di questi parametri, chimici, fisici, microbiologici e biologici, integrati con parametri aggiuntivi, permette di ottenere lo stato ambientale dei corpi idrici superficiali.

Tra gli indicatori di diagnosi è stato inserito il metodo IBE, basato sull’analisi della struttura delle comunità di macroinvertebrati bentonici che trascorrono almeno una parte della loro vita a contatto con i substrati di un corso d’acqua e sono in grado di fornire informazioni sulla qualità del corpo idrico. Quindi, per definire la qualità dei corsi d’acqua, vengono eseguite determinazioni sulla matrice acquosa e sul biota.

Lo stato ecologico viene definito dal confronto tra il livello di inquinamento descritto dai macrodescrittori e la qualità biologica definita con l’Indice Biotico Esteso (I.B.E.).

Il “livello di inquinamento dai macrodescrittori”, è un indice sintetico che mette in relazione nutrienti, sostanze organiche biodegradabili, ciclo dell’ossigeno e inquinamento microbiologico ed è rappresentabile in 5 livelli.

Vengono determinati sulla matrice acquosa alcuni parametri di base detti appunto macrodescrittori, dal valore di alcuni di questi parametri si calcola il 75° percentile della serie analitica annua. Si individua la colonna in cui ricade il risultato ottenuto e si determina così il punteggio da attribuire a ciascun parametro (Tabella 1). La somma dei punteggi ottenuti per ogni parametro ricadrà all’interno di un intervallo che definirà il Livello di Inquinamento dei Macrodescrittori (LIM).

<table>
<thead>
<tr>
<th>Parametro</th>
<th>Livello 1</th>
<th>Livello 2</th>
<th>Livello 3</th>
<th>Livello 4</th>
<th>Livello 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>100-OD(%sat)</td>
<td>≤10</td>
<td>≤20</td>
<td>≤30</td>
<td>≤50</td>
<td>>50</td>
</tr>
<tr>
<td>BOD5 (O2 mg/L)</td>
<td><2,5</td>
<td>≤4</td>
<td>≤8</td>
<td>≤15</td>
<td>>15</td>
</tr>
<tr>
<td>COD (O2 mg/L)</td>
<td><5</td>
<td>≤10</td>
<td>≤15</td>
<td>≤25</td>
<td>>25</td>
</tr>
<tr>
<td>NH4 (N mg/L)</td>
<td><0,03</td>
<td>≤0,10</td>
<td>≤0,50</td>
<td>≤1,50</td>
<td>>1,50</td>
</tr>
<tr>
<td>NO3 (Nm/L)</td>
<td><0,3</td>
<td>≤1,5</td>
<td>≤5,0</td>
<td>≤10,0</td>
<td>>10,0</td>
</tr>
<tr>
<td>Fosforo t (Pmg/L)</td>
<td><0,07</td>
<td>≤0,15</td>
<td>≤0,30</td>
<td>≤0,60</td>
<td>>0,60</td>
</tr>
<tr>
<td>E.coli (UFC/100mL)</td>
<td><100</td>
<td>≤1.000</td>
<td>≤5.000</td>
<td>≤20.000</td>
<td>>20.000</td>
</tr>
</tbody>
</table>
Tabella 1. Livello di inquinamento espresso dai macrodescrittori (L.I.M.).

<table>
<thead>
<tr>
<th>Punteggio</th>
<th>80</th>
<th>40</th>
<th>20</th>
<th>10</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.I.M.</td>
<td>480-560</td>
<td>240-475</td>
<td>120-235</td>
<td>60-115</td>
<td><60</td>
</tr>
</tbody>
</table>

L’I.B.E. si basa sull’analisi di un gruppo di organismi animali invertebrati, comunemente definiti “macroinvertebrati”, che colonizzano tutte le differenti tipologie dei corsi d’acqua. Tali comunità che vivono associate al substrato sono composte da popolazioni caratterizzate da differenti livelli di sensibilità alle modificazioni ambientali e con differenti ruoli ecologici. Poiché i macroinvertebrati hanno cicli vitali relativamente lunghi, l’indice fornisce un’informazione integrata nel tempo sugli effetti causati da differenti cause (fisiche, chimiche e biologiche), consente di formulare diagnosi della qualità degli ambienti di acque correnti sulla base delle modificazioni prodotte nella composizione delle comunità di macroinvertebrati a causa di fattori di inquinamento o di significative alterazioni fisiche dell’ambiente fluviale.

Esso segnala uno stato complessivo di “qualità biologica” del corso d’acqua e, solo indirettamente, la “qualità chimica e fisica” delle acque e dei sedimenti. Nel monitoraggio di qualità esso va quindi considerato un metodo “complementare” al controllo chimico, e microbiologico, infatti esso non consente di individuare l’azione dei singoli fattori che hanno indotto queste modificazioni né di quantificarne la rilevanza.

Nel Decreto Legislativo 152/99 è stato inserito tra le analisi di base, e quindi obbligatorio, per il monitoraggio dei corsi d’acqua.

Il metodo IBE viene eseguito stagionalmente; la media annua dei valori dell’IBE viene confrontata con il Livello d’inquinamento espresso dai macrodescrittori (LIM), il risultato peggiore tra il LIM e l’IBE determina la classe di stato ecologico del corso d’acqua (SECA) (Tabella 2).

Tabella 2. Stato ecologico dei corsi d’acqua (S.E.C.A.) ottenuto come confronto tra LIM e IBE.

<table>
<thead>
<tr>
<th>Classe 1</th>
<th>Classe 2</th>
<th>Classe 3</th>
<th>Classe 4</th>
<th>Classe 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.B.E.</td>
<td>≤10</td>
<td>8 - 9</td>
<td>6 - 7</td>
<td>4 - 5</td>
</tr>
<tr>
<td>Livello</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inquinamento</td>
<td>480 - 560</td>
<td>240 - 475</td>
<td>120 – 235</td>
<td>60 - 115</td>
</tr>
<tr>
<td>Macrodescrittori</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La qualità chimica viene definita in base alla presenza degli inquinanti chimici inorganici ed organici, indicati nella tabella 1 del D.Lgs.152/99.

Si calcola il valore del 75° percentile della serie annua, se questo valore anche per uno solo degli inquinanti supera il valore soglia, lo stato di qualità ambientale sarà scadente, nel caso in cui allo stato ecologico era attribuita una classe compresa tra 1 e 4, pessimo, nel caso in cui lo stato ecologico assumeva la classe 5, come indicato nella tabella seguente.
Lo Stato Ambientale del corso d’acqua (S.A.C.A.) è quindi ottenuto dal confronto tra lo stato ecologico e la qualità chimica.

Nella figura sottostante viene riassunto l’intero iter della classificazione dei corsi d’acqua.

Ad ogni classe corrisponde un giudizio di qualità: elevato, buono, sufficiente, scadente e pessimo e un colore di riferimento che viene riportato in cartografia: azzurro, verde, giallo, arancione e rosso.

Possono essere eseguite anche indagini integrative che non hanno carattere di obbligatorietà ma che possono essere utili per una più approfondita analisi del degrado del corpo idrico, questi sono saggi biologici o analisi sui sedimenti.

Per quanto riguarda la determinazione dello stato chimico, per il monitoraggio dell’anno 2006 sono stati utilizzati i limiti stabiliti da D.Lgs. 152/2006, attualmente in vigore.
Monitoraggio

Il D.Lgs. 152/99 prevede che i corpi idrici significativi vanno monitorati e classificati al fine del raggiungimento degli obiettivi di qualità.

La rete di monitoraggio (Figura 2) delle acque superficiali interne individuata nella Regione Marche secondo i criteri stabiliti nel D.Lgs. 152/99 comprende 61 stazioni di campionamento posizionate sui principali corsi d’acqua compresi in 18 bacini idrografici, e 3 stazioni sono posizionate sui laghi ritenuti significativi: lago di Gerosa, lago del Fiastrone, lago di Castreccioni.

La rete di rilevamento nazionale nelle Marche si identifica in 25 di queste 61 stazioni regionali e nelle tre posizionate sui laghi.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Localizzazione</th>
<th>COMUNE</th>
<th>PROV</th>
<th>Corso d'acqua</th>
<th>BACINO</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/ME</td>
<td>Km 36/IV strada a dx sotto il ponticello</td>
<td>Mercatello sul Metauro</td>
<td>PU</td>
<td>Metauro</td>
<td>METAURO</td>
</tr>
<tr>
<td>8/ME</td>
<td>Canavaccio via Metauro</td>
<td>Urbino</td>
<td>PU</td>
<td>Metauro</td>
<td>METAURO</td>
</tr>
<tr>
<td>11/ME</td>
<td>1-2 Km a valle di Piobbico sotto il ponte dopo l'имmisione del F.so dell'Eremo</td>
<td>Piobbico</td>
<td>PU</td>
<td>Candigliano</td>
<td>METAURO</td>
</tr>
<tr>
<td>14/ME</td>
<td>Sulla vecchia Flaminia sotto il ponte c/o lavanderia S.F.A.I.T.</td>
<td>Cagli</td>
<td>PU</td>
<td>Burano</td>
<td>METAURO</td>
</tr>
<tr>
<td>15/ME</td>
<td>Abbazia S.Vincenzo</td>
<td>Acqualagna</td>
<td>PU</td>
<td>Candigliano</td>
<td>METAURO</td>
</tr>
<tr>
<td>17/ME</td>
<td>Uscita Fos. Est, stradina sulla sinistra verso il frantoio</td>
<td>Fossombrone</td>
<td>PU</td>
<td>Metauro</td>
<td>METAURO</td>
</tr>
<tr>
<td>20/ME</td>
<td>A valle del Frantoio</td>
<td>FANO</td>
<td>PU</td>
<td>METAURO</td>
<td>METAURO</td>
</tr>
<tr>
<td>21/ME</td>
<td>sul greto sotto il ponte della ferrovia</td>
<td>Fano</td>
<td>PU</td>
<td>Metauro</td>
<td>METAURO</td>
</tr>
<tr>
<td>3/FO</td>
<td>Di lato al cimitero</td>
<td>Sassocorvaro</td>
<td>PU</td>
<td>Foglia</td>
<td>FOGLIA</td>
</tr>
<tr>
<td>6/FO</td>
<td>A monte di Ca’ Gallo via Vicinale Ca’ Spezie dopo il ponte</td>
<td>Auditor</td>
<td>PU</td>
<td>Foglia</td>
<td>FOGLIA</td>
</tr>
<tr>
<td>10/FO</td>
<td>Dalla superstrada verso Borgo S. Maria, dal ponte</td>
<td>PESARO</td>
<td>PU</td>
<td>Foglia</td>
<td>FOGLIA</td>
</tr>
<tr>
<td>11/FO</td>
<td>Sotto il ponte della ferrovia</td>
<td>Pesaro</td>
<td>PU</td>
<td>Foglia</td>
<td>FOGLIA</td>
</tr>
<tr>
<td>1/MA</td>
<td>Strada per Gattara, dal ponte</td>
<td>Casteldelci</td>
<td>PU</td>
<td>Marecchia</td>
<td>MARECCHIA</td>
</tr>
<tr>
<td>3/MA</td>
<td>sotto il nuovo ponte di Secchiano</td>
<td>Novafeltria</td>
<td>PU</td>
<td>Marecchia</td>
<td>MARECCHIA</td>
</tr>
<tr>
<td>1/CO</td>
<td>Al Km 11.1 , strada per il campo sportivo, sul greto</td>
<td>Sassofeltrio</td>
<td>PU</td>
<td>Conca</td>
<td>CONCA</td>
</tr>
<tr>
<td>1/TA</td>
<td>A valle del depuratore , sotto il ponte sulla vecchia statale</td>
<td>Gabicce M.</td>
<td>PU</td>
<td>Tavolli</td>
<td>TAVOLLO</td>
</tr>
<tr>
<td>3/CE</td>
<td>In via F. Mazzarini, c/o la chiesetta, sul greto</td>
<td>Pergola</td>
<td>PU</td>
<td>Cesano</td>
<td>CESANO</td>
</tr>
<tr>
<td>5/CE</td>
<td>A valle del depuratore , sotto il ponte sulla statale</td>
<td>Mondolfo</td>
<td>PU</td>
<td>Cesano</td>
<td>CESANO</td>
</tr>
<tr>
<td>1/AR</td>
<td>Sotto il ponticello fra via del Carmine e via della Fratellanza</td>
<td>Fano</td>
<td>PU</td>
<td>torrente Arzella</td>
<td>ARZILLA</td>
</tr>
<tr>
<td>4/MI</td>
<td>Ponte località Osteria</td>
<td>SERRA DEI CONTI</td>
<td>AN</td>
<td>MISA</td>
<td>MISA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----</td>
<td>---</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>7/MI</td>
<td>Foce</td>
<td>SENIGALLIA</td>
<td>AN</td>
<td>MISA</td>
<td>MISA</td>
</tr>
<tr>
<td>5/NE</td>
<td>100 m a monte confluenza Misa</td>
<td>RIPE</td>
<td>AN</td>
<td>NEVOLA</td>
<td>MISA</td>
</tr>
<tr>
<td>4/MI</td>
<td>A monte comune di Fabirano</td>
<td>FABRIANO</td>
<td>AN</td>
<td>GIANO</td>
<td>ESINO</td>
</tr>
<tr>
<td>7/MI</td>
<td>1000 m a monte confluenza Esino</td>
<td>FABRIANO</td>
<td>AN</td>
<td>GIANO</td>
<td>ESINO</td>
</tr>
<tr>
<td>5/SE</td>
<td>100 m a monte confluenza Esino</td>
<td>GENGÀ</td>
<td>AN</td>
<td>SENTINO</td>
<td>ESINO</td>
</tr>
<tr>
<td>5/ES</td>
<td>A monte confluenza Giano</td>
<td>FABRIANO</td>
<td>AN</td>
<td>ESINO</td>
<td>ESINO</td>
</tr>
<tr>
<td>9/ES</td>
<td>Sorgente Gorgovivo</td>
<td>S.S.QUIRICO</td>
<td>AN</td>
<td>ESINO</td>
<td>ESINO</td>
</tr>
<tr>
<td>14b/ES</td>
<td>La chiusa presso ristorante Boschietto</td>
<td>IESI</td>
<td>AN</td>
<td>ESINO</td>
<td>ESINO</td>
</tr>
<tr>
<td>16/ES</td>
<td>Foce</td>
<td>FALCONARA</td>
<td>AN</td>
<td>ESINO</td>
<td>ESINO</td>
</tr>
<tr>
<td>4/MU</td>
<td>dopo la diga del Lago Castreccioni</td>
<td>Cingoli</td>
<td>MC</td>
<td>Musone</td>
<td>MUSONE</td>
</tr>
<tr>
<td>10/MU</td>
<td>Ponte S.S.361 Padiglione di Osimo</td>
<td>OSIMO</td>
<td>AN</td>
<td>MUSONE</td>
<td>MUSONE</td>
</tr>
<tr>
<td>14/MU</td>
<td>Foce</td>
<td>NUMANA</td>
<td>AN</td>
<td>MUSONE</td>
<td>MUSONE</td>
</tr>
<tr>
<td>06/AS</td>
<td>Ponte zona industriale</td>
<td>NUMANA</td>
<td>AN</td>
<td>ASPIO</td>
<td>MUSONE</td>
</tr>
<tr>
<td>3/PO</td>
<td>a valle della cartiera</td>
<td>Gagliole</td>
<td>MC</td>
<td>Potenza</td>
<td>POTENZA</td>
</tr>
<tr>
<td>5/PO</td>
<td>strada prov.le S.Severino-Tolentino Km 8,250</td>
<td>S. Severino</td>
<td>MC</td>
<td>Potenza</td>
<td>POTENZA</td>
</tr>
<tr>
<td>9/PO</td>
<td>strada prov.le Sambucheto-Montelupone Km 0,700</td>
<td>Macerata</td>
<td>MC</td>
<td>Potenza</td>
<td>POTENZA</td>
</tr>
<tr>
<td>11/PO</td>
<td>SS Regina Km 6,400 - bivio per Chiarino</td>
<td>Recanati</td>
<td>MC</td>
<td>Potenza</td>
<td>POTENZA</td>
</tr>
<tr>
<td>12/PO</td>
<td>foce, ponte SS 16 Adriatica</td>
<td>Porto</td>
<td>Recanati</td>
<td>MC</td>
<td>Potenza</td>
</tr>
<tr>
<td>7/CH</td>
<td>SS 77 Km 57 nei pressi del ristorante Eremo</td>
<td>Caldarola</td>
<td>MC</td>
<td>Chieti</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>9/CH</td>
<td>ponte in località Moricuccia</td>
<td>Belforte del Chienti</td>
<td>MC</td>
<td>Chieti</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>13/CH</td>
<td>incrocio Abbazia S. Claudio</td>
<td>Corridonia</td>
<td>MC</td>
<td>Chieti</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>14/CH</td>
<td>1 Km a monte del ponte Montecosaro-Casette d'Ete</td>
<td>Montegranaro</td>
<td>MC</td>
<td>Chieti</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>16/CH</td>
<td>ponte SS Adriatica</td>
<td>Civitanova</td>
<td>MC</td>
<td>Chieti</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>20/CH</td>
<td>strada prov.le per Camporotondo Km 0.800</td>
<td>Belforte del Chienti</td>
<td>MC</td>
<td>Fiastrone</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>25/CH</td>
<td>a valle dei laghi</td>
<td>Petriolo</td>
<td>MC</td>
<td>Fiastra</td>
<td>CHIENTI</td>
</tr>
<tr>
<td>3/NE</td>
<td>Bivio per Preci</td>
<td>Visso</td>
<td>MC</td>
<td>Nera</td>
<td>TEVERE</td>
</tr>
<tr>
<td>4/TS</td>
<td>zona foce - ponte lungomare</td>
<td>Grottammare</td>
<td>AP</td>
<td>Tesino</td>
<td>TESINO</td>
</tr>
<tr>
<td>2/TR</td>
<td>valle abitato</td>
<td>Arquata del Tronto</td>
<td>AP</td>
<td>Tronto</td>
<td>TRONTO</td>
</tr>
<tr>
<td>3/TR</td>
<td>bivio per Casamurana</td>
<td>Ascoli Piceno</td>
<td>AP</td>
<td>Tronto</td>
<td>TRONTO</td>
</tr>
<tr>
<td>6/AS</td>
<td>ponte S.S. Bonifica</td>
<td>Monsampolo del Tr.</td>
<td>AP</td>
<td>Tronto</td>
<td>TRONTO</td>
</tr>
<tr>
<td>7/TR</td>
<td>ponte S.S. Adriatica</td>
<td>S.Benedetto Tr.</td>
<td>AP</td>
<td>Tronto</td>
<td>TRONTO</td>
</tr>
<tr>
<td>1/FV</td>
<td>ponte bivio per Roccafluovione</td>
<td>Ascoli Piceno</td>
<td>AP</td>
<td>Fluvione</td>
<td>TRONTO</td>
</tr>
<tr>
<td>2/AS</td>
<td>ponte immediatamente a valle diga di Gerosa</td>
<td>Comunanza</td>
<td>AP</td>
<td>Aso</td>
<td>ASO</td>
</tr>
<tr>
<td>5/AS</td>
<td>ponte Rubbianello</td>
<td>Montefiore</td>
<td>Aso</td>
<td>AP</td>
<td>ASO</td>
</tr>
<tr>
<td>6/AS</td>
<td>ponte S.S. Adriatica - zona foce</td>
<td>Pedaso</td>
<td>AP</td>
<td>Aso</td>
<td>ASO</td>
</tr>
<tr>
<td>2/TN</td>
<td>S. P. Faleriense</td>
<td>Amandola</td>
<td>AP</td>
<td>Tenna</td>
<td>TENNA</td>
</tr>
<tr>
<td>4/TN</td>
<td>ponte bivio per Belmonte Piceno</td>
<td>Montegiorgio</td>
<td>AP</td>
<td>Tenna</td>
<td>TENNA</td>
</tr>
<tr>
<td>5/TN</td>
<td>ponte bivio Fermo</td>
<td>Fermo</td>
<td>AP</td>
<td>Tenna</td>
<td>TENNA</td>
</tr>
<tr>
<td>6/TN</td>
<td>zona foce</td>
<td>P.S. Elpidio</td>
<td>AP</td>
<td>Tenna</td>
<td>TENNA</td>
</tr>
<tr>
<td>4/TE</td>
<td>100 m a monte della confluenza</td>
<td>Penna</td>
<td>S.Giovanni</td>
<td>AP</td>
<td>Tennacola</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Codice</th>
<th>Stazione</th>
<th>Comune</th>
<th>Provincia</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/EV</td>
<td>zona foce</td>
<td>Fermo</td>
<td>AP</td>
</tr>
<tr>
<td>1L/AS</td>
<td>bivio Infernaccio</td>
<td>Montefortino</td>
<td>AP</td>
</tr>
<tr>
<td>1L/CH</td>
<td>Fiastra</td>
<td>MC</td>
<td>Lago del Fiastrone</td>
</tr>
<tr>
<td>1L/MU</td>
<td>Cingoli</td>
<td>MC</td>
<td>Lago di Castricciioni</td>
</tr>
</tbody>
</table>

Figura 2. Carta della rete di monitoraggio delle acque superficiali della Regione Marche, approvata con DGR n. 3138 del 28/12/2001, in cui si possono distinguere le stazioni appartenenti alla rete regionale e quelle appartenenti anche alla rete nazionale.

I monitoraggi, che vengono effettuati su tutti i punti di campionamento posizionati sui corsi d’acqua, prevedono con cadenza mensile l’analisi dei parametri chimico-fisici e, a cadenza trimestrale, l’analisi biologica mediante utilizzo dell’indice IBE, come previsto dal D.Lgs. 152/99.

I parametri di base sono quelli indicati nella tabella 4 dell’allegato 1 del D.Lgs. 152/99 che viene riportata di seguito
<table>
<thead>
<tr>
<th>Parametro</th>
<th>Indicazione</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portata m³/sec</td>
<td>Ossigeno discholto (mg/L)</td>
</tr>
<tr>
<td>pH</td>
<td>BOD5 (O₂ mg/L)</td>
</tr>
<tr>
<td>Solidi sospesi (mg/L)</td>
<td>COD (O₂ mg/L)</td>
</tr>
<tr>
<td>Temperatura (°C)</td>
<td>Ortofosfato (P mg/L)</td>
</tr>
<tr>
<td>Conducibilità (µS7cm (20°C))</td>
<td>Fosforo totale (P mg/L)</td>
</tr>
<tr>
<td>Durezza (mg/L di CaCO3)</td>
<td>Cloruri (Cl⁻ mg/L)</td>
</tr>
<tr>
<td>Azoto Totale (N mg/L)</td>
<td>Solfati (SO₄²⁻ mg/L)</td>
</tr>
<tr>
<td>Azoto ammoniacale (N mg/L)</td>
<td>Escherichia coli (UFC/100 mL)</td>
</tr>
<tr>
<td>Azoto nitrico (N mg/L)</td>
<td></td>
</tr>
</tbody>
</table>

Tabella 5. Parametri di base con indicazione dei macrodescrittori utilizzati per la classificazione.

I parametri evidenziati in verde sono i macrodescrittori utilizzati per il calcolo del L.I.M.

Al fine della definizione dello stato chimico vengono ricercati mensilmente su tutte le stazioni i principali metalli, inoltre, nel corso dell’anno 2006 sono state ricercate con frequenza stagionale altre sostanze pericolose nella matrice acquosa sulle stazioni nazionali e su quelle in cui sono state evidenziate delle criticità, per i pesticidi le modalità di monitoraggio sono quelle indicate nel relativo piano.

Nella tabella seguente vengono riportati in dettaglio tutti i parametri ricercati nel corso dell’anno 2006.

<table>
<thead>
<tr>
<th>ACQUA</th>
<th>METALLI</th>
<th>IPA</th>
<th>PESTICIDI</th>
<th>VOC</th>
<th>PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>arsenico</td>
<td>cadmio</td>
<td>mercurio</td>
<td>arancione</td>
<td>antiparassitari totali</td>
<td>metilene cloruro</td>
</tr>
<tr>
<td>cadmio</td>
<td>mercurio</td>
<td>cromo</td>
<td>nitrato</td>
<td>simazine</td>
<td>Toluene</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>benzo(a)pirene</td>
<td>atrazina</td>
<td>cloroformio</td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>benzo(b)fluorantene</td>
<td>propazina</td>
<td>1,1,1tricloroetano</td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>benzo(k)fluorantene</td>
<td>malathion</td>
<td>carbonio tetracloruro</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>benzo(g,h,i)perilen</td>
<td>cloroprofam</td>
<td>1,1,2tricloroetile</td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>indeno(1,2,3-cd)pirene</td>
<td>parathon metile</td>
<td>diciolebromometano</td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>antracene</td>
<td>trifluralin</td>
<td>dibromoclorometano</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>fluorantene</td>
<td>terbutrina</td>
<td>1,1,2,2tetracloroetile</td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>naftalene</td>
<td>terbutilazina-desetil</td>
<td>bromoformio</td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>terbutilazina</td>
<td>cianazina</td>
<td>Benzene</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>terbutilazina</td>
<td>lindano</td>
<td>etilbenzene</td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>cianazina</td>
<td>septacloro</td>
<td>p-xilene</td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>lindano</td>
<td>eptacloro</td>
<td>o-xilene</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>eptacloro</td>
<td>esaclorobenzene</td>
<td>m-xilene</td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>esaclorobenzene</td>
<td>aldrin</td>
<td>1,2,3trimetilbenzene</td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>aldrin</td>
<td>dieldrin</td>
<td>1,2,4trimetilbenzene</td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>nichel</td>
<td>mercurio</td>
<td>piombo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>piombo</td>
<td>mercurio</td>
<td>cromo</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
<tr>
<td>cromo</td>
<td>mercurio</td>
<td>nichel</td>
<td>dieldrin</td>
<td>dieldrin</td>
<td></td>
</tr>
</tbody>
</table>

Ad integrazione monitoraggio degli anni precedenti si è provveduto ad effettuare analisi supplementari sui sedimenti fluviali al fine di ottenere ulteriori elementi conoscitivi utili a determinare le cause di degrado ambientale di un corso d’acqua. Le stazioni individuate (quelle di foce appartenenti alla rete nazionale o in prossimità, che sulla base delle conoscenze territoriali sono ritenute significative) per il monitoraggio dei sedimenti fluviali sono le seguenti, la frequenza del campionamento è stata annuale.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>LOCALITA’</th>
<th>COMUNE</th>
<th>PROVINCIA</th>
<th>BACINO</th>
<th>CORSO D’ACQUA</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/ME</td>
<td>A valle del Frantoio</td>
<td>Fano</td>
<td>PU</td>
<td>METAURO</td>
<td>Metauro</td>
</tr>
<tr>
<td>10/FO</td>
<td>Dalla superstrada verso Borgo S. Maria, dal ponte</td>
<td>Pesaro</td>
<td>PU</td>
<td>Foglia</td>
<td>Foglia</td>
</tr>
<tr>
<td>3/MA</td>
<td>sotto il nuovo ponte di Secchiano</td>
<td>Novafeltria</td>
<td>PU</td>
<td>MARECCHIA</td>
<td>Marecchia</td>
</tr>
<tr>
<td>5/CE</td>
<td>A valle del depuratore, sotto il ponte sulla statale</td>
<td>Mondolfo</td>
<td>PU</td>
<td>CESANO</td>
<td>Cesano</td>
</tr>
<tr>
<td>7/MI</td>
<td>Foce</td>
<td>Senigallia</td>
<td>AN</td>
<td>MISA</td>
<td>Misa</td>
</tr>
<tr>
<td>14b/ES</td>
<td>La chiusa presso ristorante Boschetto</td>
<td>Jesi</td>
<td>AN</td>
<td>ESINO</td>
<td>Esino</td>
</tr>
<tr>
<td>10/MU</td>
<td>Ponte S.S. 361 Padiglione di Osimo</td>
<td>Osimo</td>
<td>AN</td>
<td>MUSONE</td>
<td>Musone</td>
</tr>
<tr>
<td>11/PO</td>
<td>SS Regina Km 6,400 - bivio per Chiarino</td>
<td>Recanati</td>
<td>MC</td>
<td>POTENZA</td>
<td>Potenza</td>
</tr>
<tr>
<td>14/CH</td>
<td>1 Km a monte del ponte Montecosaro-Casette d’Ete</td>
<td>Montegranaro</td>
<td>MC</td>
<td>CHIANTI</td>
<td>Chienti</td>
</tr>
<tr>
<td>6/TR</td>
<td>ponte S.S. Bonifica</td>
<td>Monsampolo del Tr.</td>
<td>AP</td>
<td>TRONTO</td>
<td>Tronto</td>
</tr>
<tr>
<td>5/AS</td>
<td>ponte Rubbianello</td>
<td>Montefiore Aso</td>
<td>AP</td>
<td>ASO</td>
<td>Aso</td>
</tr>
<tr>
<td>5/TN</td>
<td>ponte bivio Fermo</td>
<td>Fermo</td>
<td>AP</td>
<td>TENNA</td>
<td>Tenna</td>
</tr>
</tbody>
</table>

Tabella 7. Elenco delle stazioni individuate per il monitoraggio dei sedimenti.

I parametri analizzati sui sedimenti sono indicati nella tabella seguente:
La tabella 8 mostra le sostanze pericolose ricercate nelle acque e nei sedimenti fluviali durante il monitoraggio dell’anno 2006.

Per avere ulteriori informazioni circa il degrado dei corsi d’acqua si è deciso di approfondire le indagini anche con test biotossicologici, si è proceduto nel seguente modo: per la matrice acquosa le stazioni indicate sono state quelle dei corsi d’acqua appartenenti alla rete di monitoraggio già individuata ai quali è stato assegnato un SACA inferiore o uguale a “SUFFICIENTE”, utilizzando le prove e le frequenze previste dalla Tab.9.

La tabella 9 mostra le prove biotossicologiche previste per la matrice acqua.

Per la matrice sedimenti si sono analizzate le stesse stazioni previste per la ricerca dei microinquinanti sulla stessa matrice, utilizzando le prove e le frequenze previste dalla Tab.10.
Tabella 10. Prove biotossicologiche previste per la matrice sedimenti

Risultati

L’elaborazione dei dati analitici relativi alle acque superficiali ha portato ad individuare le classi di qualità ambientale per ogni corso d’acqua della Regione Marche, mettendo in evidenza un andamento generale distribuito uniformemente lungo quasi tutte le aste fluviali.

La carta seguente (Figura 3) mostra la distribuzione delle stazioni lungo i corsi d’acqua marchigiani e la relativa classificazione indicata dalla colorazione riportata in legenda.
Lo stato di qualità ambientale dei corsi d’acqua coincide in tutte le stazioni con lo stato ecologico, questo sta a significare che lo stato chimico non influenza la classificazione, la presenza di inquinanti chimici non supera mai il valore soglia definito alla tabella 1/A dell’allegato 1 del D.Lgs 152/2006.

La qualità delle acque dei corsi d’acqua nelle zone montane o collinari più interne risulta essere buona, nell’anno 2006 solo la stazione a monte del fiume Musone è stata
classificata “ottima”, a differenza degli ultimi due anni in cui a nessuna stazione veniva attribuita questa classe. Nelle zone subcollinari, ricadenti nella fascia centrale della regione, lo stato ambientale è risultato in generale di classe 3 - “sufficiente”.

Il degrado è poi progressivamente significativo e raggiunge, in corrispondenza delle foci, classi di qualità che oscillano negli anni ed a seconda delle condizioni meteoclimatiche, tra le classi quarta e la quinta, corrispondenti ad uno stato ecologico “scadente” o “pessimo”.

La causa del progressivo aumento dell’inquinamento dalle sorgenti alle foci è individuata nell’aumentato impatto antropico con il superamento nei periodi di minor portata della capacità autodepurativa del corso d’acqua.

Si nota che anche i dati del 2006 confermano il trend che si è delineato negli anni precedenti: si assiste ad un lento miglioramento in cui una stazione da buona passa ad ottima (4/MU, a monte del fiume Musone), una stazione da sufficiente passa a buona (17/ME, nel tratto centrale del fiume Metauro), molte stazioni situate nei tratti terminali dei corsi d’acqua, in particolare di Tenna, Tesino e Tronto, passano da scadente a sufficiente, rientrando così nell’obiettivo previsto per 2008, che prevede che tutte le stazioni debbano raggiungere la classe “sufficiente”. Peggioramenti si rilevano nelle zone di foce del torrente Ete Vivo e nella stazione sita sul torrente Aspio, affluente del Musone che risultano pessime. La stazione 7/Gi situata sul torrente Giano, a monte della confluenza con il fiume Esino e a valle del centro urbano ed industriale di Fabriano, evidenzia una scadente qualità ambientale delle acque, a differenza dell’anno precedente che rientrava in una classificazione sufficiente.

Alle situazioni particolarmente compromesse evidenziate nel 2005 che sono la foce del fiume Tavollo e del fiume Foglia, si aggiungono anche il torrente Aspio e Il torrente Ete Vivo a cui è stata attribuita una classe pessima. Nel grafico a torta in figura 4 si visualizza la situazione generale.

La criticità individuata alla foce del fiume Foglia risulta dovuta principalmente al depuratore che serve la città di Pesaro, il quale raccoglie solo una parte degli scarichi prodotti (72%). La situazione del torrente Tavollo potrebbe migliorare completando le opere di fognatura e depurazione per i centri abitati che risultano carenti. Anche per l’Ete vivo i dati mostrano chiaramente un inquinamento caratteristico di insediamenti urbani e industriali. La classificazione dell’Aspio, affluente del Musone, è il risultato di elevate cariche batteriche e valori elevati di azoto ammoniacale e di fosforo, inoltre la comunità macrobentonica è ridotta a pochi taxa tolleranti.
Le stazioni in cui lo stato ambientale dovrà migliorare e raggiungere il livello “Sufficiente” entro il 2008 sono 7, quindi tre in meno rispetto l’anno precedente:

- Foglia: 11/FO (foce)
- Tavollo: 1/TA (foce)
- Arzilla: 1/AR (foce)
- Musone: 14/MU (foce), 06/AS
- Ete Vivo: 2/EV
- Giano: (7/GI)

Le stazioni in cui lo stato ambientale dovrà migliorare e raggiungere il livello “Buono” entro il 2015, come previsto dalla nuova normativa (la legge precedente prevedeva il 2016), sono 40, esattamente lo stesso numero dell’anno precedente quindi alle 7 precedenti se ne aggiungono numerose e lo sforzo è notevole e dovrà riguardare fra l’altro il completamento della rete di depuratori e la loro gestione ottimale, ma anche la definizione del minimo deflusso vitale e quindi la limitazione dei prelievi di acqua nei momenti critici e l’adozione di provvedimenti di trattamento della “prima pioggia”.

In seguito all’emissione del decreto del 152/99 si è iniziato un lavoro di riorganizzazione del monitoraggio dei corsi d’acqua partendo da una nuova definizione delle stazioni che sono state definite con DGR 3138 del 2001, la quale prevedeva l’elaborazione dei dati pregressi e la definizione delle classi di qualità dal 97.

Di seguito vengono riportati i risultati ottenuti per i corsi d’acqua e si può subito notare come per i dati precedenti al 2002 molte stazioni risultassero non monitorate in quanto di nuova istituzione, dall’anno 2003 tutte le stazioni sono monitorate con continuità.
Tabella 11. Risultati ottenuti nelle classificazioni dei corsi d’acqua negli ultimi 10 anni, riportati come numero di stazioni.

<table>
<thead>
<tr>
<th>Anno</th>
<th>0</th>
<th>11</th>
<th>25</th>
<th>4</th>
<th>16</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
<td>11</td>
<td>25</td>
<td>4</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>2001</td>
<td>1</td>
<td>20</td>
<td>27</td>
<td>7</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>16</td>
<td>24</td>
<td>9</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>2003</td>
<td>1</td>
<td>14</td>
<td>29</td>
<td>8</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>0</td>
<td>17</td>
<td>30</td>
<td>10</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>21</td>
<td>30</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>1</td>
<td>20</td>
<td>33</td>
<td>3</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Nell’ultimo anno di monitoraggio l’86% rientra nelle categorie “elevato-buono-sufficiente”, percentuale che è passata dai 72% del 2003 al 77% del 2004, al 84 nel 2005 situazione che va progressivamente migliorando. Solo il 12% dovrà rientrare in categoria entro il 2008, ma soprattutto entro il 2015 lo sforzo deve riguardare un ulteriore salto di categoria, fino alla qualifica “buono” di quel 12 % a cui si aggiunge l’ulteriore 53 %.

Si precisa che le indagini effettuate sui sedimenti non ha fatto riscontrare evidenti segnali di inquinamento.
Classificazione delle Acque idonee alla vita dei pesci

Tra gli obiettivi di qualità per specifica destinazione rientrano le acque dolci che richiedono protezione e miglioramento per essere idonee alla vita dei pesci salmonicoli e ciprinicoli.

La sezione B dell’allegato 2 del decreto 152/99 riporta un elenco di parametri chimici (Tabella 1/B) con le relative concentrazioni che devono essere rispettate affinché ogni tratto dei corsi d’acqua possa essere definito idoneo alla vita dei pesci salmonicoli o idoneo alla vita dei pesci ciprinicoli o non idoneo alla vita dei pesci.

Le acque classificate si considerano idonee alla vita dei pesci quando i relativi campioni prelevati con la frequenza minima riportata nella tabella 1/B presentino valori dei parametri di qualità conformi ai limiti imperativi indicati e alle note esplicative della medesima tabella.

La normativa in questo caso prevede due categorie a qualità decrescente: acque salmonicole e ciprinicole. I parametri presi in considerazione sono fisico-chimici e tra i principali si ricordano: temperatura, ossigeno disolto, BOD5, forme dell’azoto, tensioattivi, metalli pesanti, idrocarburi.

Il nuovo decreto legislativo del 3 aprile 2006 n. 152, non modifica in maniera sostanziale le tabelle previste dal decreto precedente. E’ importante notare che per il parametro temperatura la frequenza di campionamento è mensile anziché settimanale, questo porterà qualche modifica perché in passato questo parametro risultava parzialmente monitorato, quindi nel considerare il 95% dei risultati al di sotto del valore imperativo per la temperatura non era possibile escludere nessun valore, dal prossimo sarà possibile farlo e potrebbe portare a dei miglioramenti in quanto in alcune stazioni è proprio questo parametro a determinare un peggioramento della classe, in particolare da salmonicole a ciprinicole

Monitoraggio

I punti di monitoraggio sono stati individuati con delibera di Giunta Regionale 3138 del 2001 seguendo il criterio di prendere in considerazione i tratti dei corsi d’acqua che ricadono all’interno di aree importanti dal punto di vista naturalistico, in seguito si è stabilito di effettuare il campionamento e la classificazione ai fini della vita dei pesci in tutte le stazioni della rete regionale che risultano le stesse in cui classifica lo stato ambientale.

Risultati

L’analisi dei dati ha permesso la determinazione del numero di casi e della frequenza con cui si è verificato il superamento dei valori guida e imperativi per i Salmonidi e i Ciprinidi. In base a tali risultati si è giunti alla classificazione in acque salmonicole, ciprinicole o non idonee alla vita dei pesci.

Nella tabella sottostante si evidenziano i risultati ottenuti negli ultimi 10 anni, si nota un lento miglioramento delle acque destinate alla vita dei pesci, nell’anno 2006 solo 15 su 64, ovvero il 23%, risulta non idoneo, risultato molto vicino a quello dei due anni precedenti mentre dal 2003 al 2004 vi è stato un netto miglioramento. Cresce anche il numero di tratti risultanti idonei alla vita dei pesci salmonicoli rispetto il 2005
Tabella 12. Risultati ottenuti nelle classificazioni dei corsi d’acqua nella classificazione ai fini della vita dei pesci.

Il 23% delle stazioni risulta non idoneo alla vita dei pesci, contro il 27% del 2005 e questo si può considerare abbastanza soddisfacente in quanto si tratta di 15 stazioni situate nella maggior parte dei casi nei pressi della foce, contro le 46 per le quali le acque sono risultate idonee.

Classificazione delle acque idonee alla vita dei pesci - ANNO 2006

Figura 7 Ripartizione percentuale, dello delle acque classificate idonee alla vita dei pesci salmonicoli, ciprinicoli o non idonee, per l’anno 2006

Nelle zone montane le acque risultano essere idonee alla vita dei pesci, nella maggior parte a quelli salmonicoli.

L’idoneità ai ciprinidi non si rileva sul medio corso solo sul fiume Conca, confermando il risultato degli anni precedenti e sulla stazione 7/GI che si trova nel torrente Giano a valle di Fabriano. Acque non idonee alla vita dei pesci, tolte queste eccezioni, si trovano solo sui tratti terminali dei corsi d’acqua.

Le zone di foce che risultano ancora idonee alla vita dei pesci sono oltre a quelle dell’anno 2005 che si riconfermano anche per il 2006 e cioè Metauro, Esino, Potenza e Chienti anche quelle dei fiumi Cesano e Misa.
La cartografia illustra la chiaramente i risultati ottenuti per l’anno 2006 che verranno commentati in dettaglio nelle pagine seguenti.

Classificazione delle acque idonee alla vita dei pesci
(art. 10 D.Lgs. 152/99)
ANNO 2006

Classificazione delle acque idonee alla vita dei pesci
Zone a Protezione Speciale
Aree Biotitaly
Parchi o riserve naturali

VITA_DEL_P
- SALMONICOLI
- CIPRINICOLI
- NON CONFORME
- NON MONITORATO

Figura 8 Classificazione delle stazioni di monitoraggio in base alla conformità per la vita dei pesci, riportata per l’anno 2006. La carta indica anche le aree a protezione speciale, le aree biotitaly ed i parchi o riserve naturali.

E’ importante sottolineare che, come si nota dalle schede delle singole stazioni, il declassamento delle acque da idonee alla vita dei pesci salmonicoli a quelli ciprinicoli è dovuto principalmente al parametro temperatura, che nel periodo estivo risulta determinante a causa della portata limitata di molti corsi d’acqua marchigiani, in parte con il nuovo decreto, questo problema viene risolto, come spiegato sopra. La non idoneità alla vita dei pesci è dovuta principalmente all’inquinamento organico dimostrato dalla presenza di sostanze quali ammoniaca sia nella forma dissociata che indissociata, BOD, OD....
Monitoraggio eseguito dal Dipartimento di Pesaro

L’attività di monitoraggio dei corpi idrici significativi della Provincia di Pesaro comprende 19 punti dislocati lungo le asti fluviali (Tabella 1).

Il nuovo riferimento normativo nazionale, il recente D. Lgs. n. 152/2006 introduce nuovi standard di qualità per quanto riguarda gli inquinanti chimici (sostanze prioritarie e sostanze pericolose prioritarie) e prevede nuovi monitoraggi per i parametri biologici ed idromorfologici. In attesa che vengano definiti i criteri per la classificazione dei corpi idrici ai sensi del nuovo decreto, il monitoraggio e la classificazione delle acque superficiali vengono effettuati sulla base di quanto previsto dal D. Lgs. n. 152/1999;

In riferimento al D. Lgs. n. 152/1999 sono stati effettuati campionamenti e analisi mensili per i parametri chimico-fisici e microbiologici, e stagionalmente è stata effettuata l’analisi biologica mediante utilizzo dell’indice IBE.

Secondo quanto previsto dall’Accordo di Programma Quadro (APQ) “Tutela delle acque e gestione integrata delle risorse idriche”, sono state effettuate quattro campagne di prelievi per la ricerca di sostanze pericolose (IPA e VOC) nelle acque delle stazioni che fanno parte della rete nazionale (indicate in Tabella 1 con l’asterisco rosso) con l’aggiunta di alcune stazioni che hanno presentato criticità nell’anno 2005 (indicate in Tabella 1 con due asterischi rossi). Inoltre è stata effettuata una campagna di prelievi per la ricerca di fitofarmaci nelle acque, in concomitanza del “Piano di sorveglianza ambientale degli effetti derivanti dall’utilizzo dei prodotti fitosanitari nelle acque superficiali e sotterranee” (Tabella 2) nelle stesse stazioni (20/ME, 10/FO, 3/MA e 5/CE), dove sono stati prelevati i sedimenti. In questi ultimi sono stati ricercati i parametri IPA, PCB e metalli. Per la valutazione di tali sostanze si farà riferimento al recente D. Lgs. n. 152/2006, al D.M. del 6 novembre 2003 n. 367 e, per avere un ordine di grandezza da confrontare, anche con il D.L. 31/01 riferito alle acque potabili.

I dati chimici, microbiologici e biologici hanno permesso una classificazione dei corpi idrici superficiali in cinque classi (elevato, buono, sufficiente, scadente, pessimo), definito SAC, che si ottiene combinando il livello di inquinamento dei macrodescrittori (LIM), definito dai parametri chimici e microbiologici, con il risultato dell’indice Biotico Esteso (IBE) e dello stato chimico del corpo idrico derivato dall’analisi dei principali microinquinanti chimici ricercati, ossia metalli pesanti, la cui ricerca è stata effettuata mensilmente. Con l’Accordo di Programma Quadro alla definizione dello stato chimico sono stati aggiunti dati relativi a fitofarmaci e altre sostanze pericolose (IPA e VOC) (Tabella 2).

Tabella 1: Punti di prelievo nei corsi d’acqua della Provincia di Pesaro

<table>
<thead>
<tr>
<th>Stazione</th>
<th>Comune</th>
<th>Località</th>
<th>Corso d’acqua</th>
<th>Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>*1 MA</td>
<td>CASTELDELCI</td>
<td>Molino di Bascio</td>
<td>Marecchia</td>
<td>43°45’12.0” 12°11’45.6”</td>
</tr>
<tr>
<td>*3 MA</td>
<td>NOVAFELTRIA</td>
<td>Secchiano</td>
<td>Marecchia</td>
<td>43°54’59.7” 12°18’59.4”</td>
</tr>
<tr>
<td>1 CO</td>
<td>SASSOFELTRIO</td>
<td>Fratte</td>
<td>Conca</td>
<td>43°45’48.9” 12°32’56.4”</td>
</tr>
<tr>
<td>3 FO</td>
<td>SASSOCORVARO</td>
<td>Caprazzino</td>
<td>Foglia</td>
<td>43°42’24.1” 12°17’32.4”</td>
</tr>
</tbody>
</table>
Tabella 2 - Stazioni scelte per i Sedimenti e per il monitoraggio dei fitofarmaci:

<table>
<thead>
<tr>
<th>Stazione</th>
<th>Comune</th>
<th>Località</th>
<th>Corso d’acqua</th>
<th>Coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 \ ME</td>
<td>FANO</td>
<td>Bellocchi</td>
<td>Metauro</td>
<td>43°47’08”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13°01’05”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13°01’05”</td>
</tr>
<tr>
<td>10 \ FO</td>
<td>PESARO</td>
<td>Chiusa di Ginestreto</td>
<td>Foglia</td>
<td>43°52’00.0”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12°48’41.0”</td>
</tr>
<tr>
<td>3 \ MA</td>
<td>NOVAFELTRIA</td>
<td>Secchiano Marecchia</td>
<td>Marecchia</td>
<td>43°54’59.7”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12°18’59.4”</td>
</tr>
<tr>
<td>5 \ CE</td>
<td>MONDOLFO</td>
<td>Foce</td>
<td>Cesano</td>
<td>43°44’58.2”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12°40’35.4”</td>
</tr>
</tbody>
</table>

Nel 2006 lo stato di qualità ambientale dei corsi d’acqua (SACA) è risultato molto simile rispetto l’anno precedente (Tabella 3) fatta eccezione per la stazione 17/ME dove il SACA è migliorato passando da una terza ad una seconda classe di qualità. Il SACA è determinato in ogni punto di campionamento dallo stato ecologico (SECA) in quanto lo stato chimico (determinato come sopra esposto) è sempre risultato inferiore ai valori soglia previsti dal recente D. Lgs. n. 152/2006 “Norme in materia ambientale”.

Tabella 2 - Stazioni scelte per i Sedimenti e per il monitoraggio dei fitofarmaci:
Tabella 3: Confronto tra risultati del LIM, dell’IBE, del SECA e del SACA nelle stazioni di prelievo dei corsi d’acqua nel periodo 2004-2006.

<table>
<thead>
<tr>
<th>Codice stazioni</th>
<th>LIM</th>
<th>IBE</th>
<th>SECA</th>
<th>SACA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/MA</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3/MA</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3/CE</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5/CE</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1/AR</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>1/CO</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>1/TA</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3/FO</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>6/FO</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10/FO</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11/FO</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4/ME</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>8/ME</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11/ME</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>14/ME</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>15/ME</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>17/ME</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>20/ME</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>21/ME</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Legenda:
- classe 1 - Elevato
- classe 2 – Buono
- classe 3 - Sufficiente
- classe 4 – Scadente
- classe 5 - Pessimo

In generale i parametri maggiormente interessati nella classificazione delle acque idonee alla vita dei pesci sono azoto ammoniacale, ammoniaca non ionizzata e nitriti.
Tabella 4: Classificazione delle acque idonee alla vita dei pesci relativa ad ogni punto di campionamento

<table>
<thead>
<tr>
<th>Stazione</th>
<th>Località</th>
<th>Classificazione delle acque idonee alla vita dei pesci</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA</td>
<td>CASTELDELCI Molino di Bascio</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>MA</td>
<td>NOVAFELTRIA Secchiano</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>CO</td>
<td>SASSOFELTRIO Fratte</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>FO</td>
<td>SASSOCORVARO Caprazzino</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>FO</td>
<td>AUDITORE A valle di Casinina</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>FO</td>
<td>PESARO Chiusa di Ginestreto</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>FO</td>
<td>PESARO Foce</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>CE</td>
<td>PERGOLA A valle di Pergola</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>CE</td>
<td>MONDOLFO Foce</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>TA</td>
<td>GABICCE MARE Foce</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>AR</td>
<td>FANO Carmine</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>ME</td>
<td>MERCATELLO M S.Angelo in Vado</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI SALMONIDI</td>
</tr>
<tr>
<td>ME</td>
<td>URBINO Canavaccio</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ME</td>
<td>PIOBBICO A valle</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI SALMONIDI</td>
</tr>
<tr>
<td>ME</td>
<td>CAGLI Smirra</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ME</td>
<td>ACQUALAGNA A valle</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ME</td>
<td>FOSSOMBORNE A valle</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ME</td>
<td>FANO Belloccoli</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ME</td>
<td>FANO Foce</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
</tbody>
</table>

Di seguito viene descritto l’andamento di ogni bacino fluviale prendendo in considerazione ogni singolo punto di prelievo dislocato su di esso.
Fiume Foglia

Il Fiume Foglia nasce in provincia di Arezzo, dal monte Sovara (1003 m), e scorre quasi totalmente nella provincia di Pesaro-Urbino. È un corso d’acqua con regime pluviale e torrentizio lungo 79 Km. e possiede un bacino idrografico di 701 Kmq. Gli affluenti più importanti sono: sulla destra i torrenti Apsa di Urbino e Apsa di S.Donato, che nascono dai rilievi di Urbino e sfociano rispettivamente in prossimità di Schieti e Montecchio, sulla sinistra il torrente Mutino, che nasce da versante meridionale del monte Carpegna e confluisce nel Foglia in località Lunano, ed il torrente Apsa di Macerata Feltria, che nasce dal versante orientale del monte Carpegna e contribuisce ad alimentare l’invaso di Mercatale, sistemazione idraulica di notevoli dimensioni. Sull’asta fluviale del fiume Foglia troviamo tre opere di captazione per acque destinate al consumo umano: presso la diga di Mercatale, presso il Lago di Schieti e presso Muraglione di Colbordolo.

Le stazioni di campionamento collocate sull’asta fluviale sono 4, posizionate nel territorio compreso tra Lunano e Pesaro.

Il programma di monitoraggio prevede, su tutte le stazioni, campionamenti mensili per parametri chimici e microbiologici. L’indice IBE viene applicato due volte all’anno per la stazione 3/FO di Caprazzino e quattro volte all’anno per le restanti stazioni. L’indice SECA rappresenta il confronto tra LIM e IBE. L’indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell’All.2 sez.B del D.Lgs 152/99.

Stazione 3/FO

Il punto di campionamento 3/FO si trova a Caprazzino, a valle di Lunano, nel comune di Sassocorvaro. La distanza dalla sorgente è di Km. 21 e la quota è di 240 m/s.l.m. Il territorio che gravita sul tratto di fiume comprende zone agricole, che producono un’azione modificatrice dei tratti morfologici del territorio stesso e le aree urbane dei paesi di Belforte all’Isauro, Piandimeleto e Lunano. La stazione di campionamento si presenta con un substrato costituito da ciottoli, massi e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluviale presenta formazioni arboree riparie, arbusti e fasce erbacee nel greto, nei periodi di magra. La sezione trasversale del corso d’acqua non presenta interventi artificiali. Le risultanze analitiche hanno evidenziato un punteggio del LIM corrispondente ad un secondo livello, tuttavia l’Indice Biotico Esteso si posiziona in terza classe di qualità, con valore 7, attribuendo alla stazione uno stato ambientale (SACA) “sufficiente” il quale è rimasto invariato dal 1997 a tutt’oggi.

La classificazione delle acque idonee alla vita dei pesci (D.Lgs n.152/2006, all.2 sez.B) risulta “ciprinicola”, come nel 2005 ed è attribuibile ai valori dell’ossigeno dischiolto e alle alte temperature raggiunte dalle acque in estate. Per quanto riguarda i metalli, i limiti dettati dal D. Lgs 152/06 non vengono superati.

Questa stazione non fa parte del gruppo di stazioni da monitorare per i parametri aggiuntivi (IPA, pesticidi, composti organici volatili, PCB) contenuti nel progetto Accordo programma Quadro, ma è stata comunque monitorata con un unico campionamento.

Nel suddetto campionamento si segnala la presenza di alcuni composti organici volatili (*Diclorobromometano*, *Dibromoclorometano*, 1,1 *Dicloroetano*, 1,2 *Dichloropropano*, 1,2 *Dichloroetilene*, *Triclorometano* (o chloroform) di cui l’ultimo presente in tabella 1/A dell’allegato 1 della parte terza del D. Lgs. 152/2006 ed inferiori al limite. Le prime due sostanze si riscontrano solitamente in seguito a clorazione e sono in quantità inferiori a quanto richiesto dalla normativa per le acque potabili D.L 31/01. I
parametri 1,1 Dicloroetano (inferiore al limite 367/03), 1,2 Dicloropropano e 1,2 Dicloroetilene sono presenti in quantità basse (rispettivamente 0,01µg/l, 0,01µg/l, 0,08µg/l); i primi due fanno parte della Tab.1/B - Parametri aggiuntivi da monitorare nelle acque superficiali nell’elenco degli idrocarburi alifatici clorurati. Il testo della legge riporta la seguente nota: “il ritrovamento dei suddetti inquinanti, la cui presenza non derivi da cause naturali, sarà segnalato dalle Regioni al Ministero dell’Ambiente e della Tutela del territorio, il quale provvederà alla predisposizione di un decreto che determinerà i limiti di concentrazione da rispettare.”

Il 1,2 Dicloropropano è comunque inferiore al valore limite del D.M. 367/03.

Stazione 6/FO
La stazione 6/FO si trova a valle di Casinina, nel comune di Auditore, a Km. 35 dalla sorgente e a 150 m/s.l.m. La granulometria del substrato di questo tratto di fiume è costituita da ciottoli, massi e ghiaia instabile e movibile a tratti in eventi di piena. La fascia perifluviale presenta formazioni arboree riparie, arbusti e fasce erbacee nel greto, nei periodi di magra. La sezione trasversale del corso d’acqua non presenta interventi artificiali. In questo tratto di fiume influisce il territorio destinato all’agricoltura e gli scarichi civili del paese di Casinina. I dati analitici hanno evidenziato un indice IBE 6 (III classe di qualità) Il LIM totalizza una seconda classe di qualità, quindi ancora una volta l’IBE è responsabile del giudizio del SACAP, “sufficiente” il quale non varia nel periodo dal ’97 al 2005. La classificazione delle acque idonee alla vita dei pesci si conferma ciprinicola, a causa delle alte temperature dell’acqua, come avveniva nel 2005. Le analisi aggiuntive presentano composti organici volatili in un campionamento Dibromoclorometano, Triclorometano e 1,2 Dicloropropano in due campionamenti. Il dibromoclorometano si riscontra solitamente in seguito a clorazione ma è presente in quantità inferiore a quanto richiesto dalla normativa per le acque potabili D.L 31/01. Il 1,2 Dicloropropano è presente in due campionamenti con la media 0,03µg/l (inferiore al limite del 367/03) e fa parte della Tab.1/B - Parametri aggiuntivi da monitorare nelle acque superficiali nell’elenco degli idrocarburi alifatici clorurati e da comunicare al Ministero. Il composto Triclorometano (Cloroformio) è in quantità inferiore rispetto la Tab.1/A del D.Lgs 152/06. Per quanto riguarda i metalli, i limiti dettati dal D. Lgs 152/06 non vengono superati.
La stazione 10/FO, presso la Chiusa di Ginestreto, si trova a Km. 60 dalla sorgente e a 35 m/s.l.m.. L’acqua scorre su un substrato di ciottoli, ghiaia e limo con turbolenza e velocità bassa, instabile in evento di piena. Il tratto di fiume riceve gli scarichi dei paesi di Montelabbate, S. Angelo in Lizzola e parte di quelli di Corboldolo. Il territorio circostante è adibito ad uso agricolo e zone industriali. La fascia perifluvia presenta formazioni arbustive e fasce erbacee. La sezione trasversale del corso d’acqua non presenta interventi artificiali. I dati chimici e microbiologici, relativi a questa stazione, hanno prodotto un SACA “sufficiente”, determinato dal valore IBE, il quale è stazionario nella terza classe di qualità con una media di 7 con valore dell’indice LIM livello 3. Per quanto riguarda la classificazione per la vita dei pesci si presenta di nuovo una situazione di non idoneità come nel 2004, con un peggioramento rispetto il 2005, che risultava ciprinicola, a causa degli alti valori dell’azoto ammoniacale e dell’ammoniaca non ionizzata.

Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative alle acque di questa stazione, hanno evidenziato la presenza di Terbutilazina-Desetil, Terbutilazina, 1,1,2 Tricloroetilene, 1,1,2,2 Tetracloroetilene, in un campionamento e Triclorometano, 1,2 Dicloropropano in due campionamenti. I dati dei primi due composti, se considerati come somma dei prodotti fitosanitari e biocidi, e dei successivi due sono inferiori ai limiti della Tab.1/A del D.Lgs 152/06, l’ultimo (1,2 Dicloropropano in media 0,03µg/l inferiore al limite del 367/03) fa parte del gruppo della Tab. 1/B da segnalare al Ministero. Per quanto riguarda i metalli, i limiti dettati dal D. Lgs 152/06 non vengono superati. L’esame del sedimento, nei quali sono stati ricercati metalli, IPA, PCB e i pesticidi non ha rilevato valori superiori al limite del D.M. 367/03, per quanto riguarda i metalli, e nessun dato superiore al limite di determinazione per IPA, PCB e Pesticidi.
Stazione 11/FO

La stazione 11/FO è localizzata in chiusura di bacino a circa 1000 metri dalla foce, a Km. 72 dalla sorgente e a quota 0/m s.l.m..

Il terreno circostante è totalmente urbano, quindi il tratto fluviale è pesantemente influenzato dalla pressione antropica della città di Pesaro. Il punto di campionamento presenta un substrato costituito da ghiaia e limo. La fascia perifluviale è prevalentemente erbacea e arbustiva. La sezione trasversale del corso d’acqua non presenta interventi artificiali. Il SACA è definito “pessimo” dal ’97 al 2006, salvo nel ’98 in cui il SACA si presentava come “scadente”; il dato analitico che hanno prodotto il giudizio è l’IBE. L’assenza di una comunità macrobentonica ben strutturata, costituita da poche specie molto tolleranti all’inquinamento, determina un IBE corrispondente a 3, cioè una quinta classe di qualità.

La non idoneità alla vita dei pesci negli ultimi anni, è causata dai valori elevati dell’azoto ammoniacale e dell’ammoniaca non ionizzata derivati dagli scarichi urbani. Il territorio che grava a monte della zona fociale è ad alta densità di popolazione, rispetto alle stazioni a monte, e inoltre presenta numerosi insediamenti produttivi. Il depuratore che serve la città di Pesaro raccoglie solo una parte degli scarichi prodotti, parte dei reflui urbani vengono versati direttamente in fiume senza una idonea depurazione, ciò produce una notevole caduta di qualità delle acque del fiume Foglia rispetto la stazione precedente. Nella stazione 11/FO sono stati riscontrati i parametri **Diclorobromometano, Dibromooclormetano, 1,1,2,2 Tetrachloroetilene e 1,1,2 Tricloroetilene** con valori inferiori a quanto richiesto dalla normativa per le acque potabili D.L 31/01. Le prime due sostanze si riscontrano solitamente in seguito a clorazione, il 1,1,2,2 Tetrachloroetilene è un solvente legato a scarichi urbani o industriali, in particolare a lavanderie, è comunque presente in quantità molto basse, inferiore al limite per le acque dolci richiesto dalla normativa 152/06 per il 2008. Il Tricloroetilene è un solvente clorurato utilizzato nelle industrie per processi di sgrassaggio dei metalli, il dato è inferiore alla tab. 1/A del D.Lgs.152/06 .Il **Cloroformio** in media è presente in quantità inferiori rispetto alla nuova normativa. I parametri **1,1 Dicloroetano, 1,2 Dicloropropano e 1,2 Dicloroetilene** sono presenti in quantità basse (rispettivamente 0,01µg/l, 0,11µg/l, 0,07µg/l);i primi due fanno parte della Tab.1/B - Parametri aggiuntivi da monitorare nelle acque superficiali nell’elenco degli idrocarburi alifatici clorurati. Il **1,2 Dicloropropano** è comunque inferiore al valore limite del D.M. 367/03. Il **Cloruro di vinile** è presente con una media di 0,07µg/l, inferiore al limite della Tab.1/A; questo prodotto viene utilizzato come costituente base del PVC per produrre prodotti plastici e rappresenta il prodotto di degradazione dei composti tricloroetilene, tricloroetano e tetrachloroetilene. In aggiunta sono presenti **Terbutilazina-Desetil, Terbutilazina**, inferiori come somma della voce prodotti fitosanitari e biocidi nella tab.1/A. Per quanto riguarda i metalli non vi sono dati che superano la tab.1/A del suddetto decreto.
D. Lgs. 152/06 All.2 sez. A tab. I/A Classificazione delle acque superficiali destinate alla produzione di acque potabili. Anno 2006

<table>
<thead>
<tr>
<th>Potabilizzatore</th>
<th>Comune</th>
<th>Fiume</th>
<th>Classificazione parametri batteriologici</th>
<th>Classificazione parametri chimici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diga di Mercatale</td>
<td>Sassocorvaro</td>
<td>Foglia</td>
<td>A3 coliformi totali, coliformi fecali</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Lago di Schieti</td>
<td>Urbino</td>
<td>Foglia</td>
<td>A3 per coliformi totali, coliformi fecali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Loc. Muraglione</td>
<td>Colbordolo</td>
<td>Foglia</td>
<td>A3 per coliformi totali, coliformi fecali, streptococchi fecali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
</tbody>
</table>
Fiume Metauro

Il fiume Metauro, dopo un percorso di circa 110 Km sbocca nel mare Adriatico all'altezza della frazione “Madonna del Ponte”, situata 3Km a Sud della città di Fano.

Il suo bacino idrografico ha un'estensione di 1264.52 kmq ed è il più vasto dell'intera regione Marche. Lungo il suo percorso sono presenti sbarramenti utilizzati per la produzione di energia elettrica, e precisamente: in località S. Lazzaro, Ponte degli Alberi, Bellocchi e presso la Gola del Furlo. Sono presenti opere di captazione per la produzione di acqua destinata alla potabilizzazione nei comuni di Mercatello sul Metauro, Fermignano, Fossombrone, Urbino e Serrungarina, Urbania, Cagli e Fano.

Sull'asta fluviale sono state posizionate 8 stazioni di campionamento, 5 nel ramo principale e 3 negli affluenti Candigliano e Burano.

Il programma di monitoraggio prevede, in tutte le stazioni, campionamenti mensili per parametri chimici e microbiologici. L'indice IBE viene applicato due volte all'anno per le stazioni 11/ME a Piobbico e 14/ME a Cagli e quattro volte all'anno per le restanti stazioni.

L'indice SECA rappresenta il confronto tra LIM e IBE. L'indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell'All.2 sez.B del D.Lgs 152/99.

Stazione 4/ME

Il fiume Metauro, a Mercatello sul Metauro, riceve le acque del torrente S.Antonio, il quale talvolta ha presentato criticità legate al traforo per la realizzazione della strada Fano-Grosseto.

Il punto di campionamento è denominato 4/ME ed è posizionato a monte di S.Angelo in Vado a 19,7 Km di distanza dalla sorgente a e quota 360 m /s.l.m..

La zona circostante è essenzialmente agricola. La stazione di campionamento presenta una granulometria del substrato costituita da roccia e massi stabilmente incassati. La fascia perifluviale è costituita da formazioni arboree di tipo ripario sufficientemente strutturate e non vi sono interventi artificiali nella sezione trasversale del corso d'acqua. L'elaborazione dei dati per lo stato ambientale ha definito un giudizio “buono” e la classificazione delle acque risulta salmonicola, come nel 2005, presentando un miglioramento rispetto la classificazione ciprinicola del 2004. Il metodo IBE si stabilizza nella seconda classe di qualità (IBE 8); la struttura delle popolazioni macrobentoniche è ben diversificata, con riduzione minima della biodiversità. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, e le analisi sui metalli, effettuate in un unico campionamento in quanto non inclusa nell’elenco delle stazioni, non hanno evidenziato valori significativi.
Stazione 8/ME

La stazione 8/ME, collocata a Canavaccio, si trova a 64,9 Km di distanza dalla sorgente e a 125 m/s.l.m.. Il territorio circostante è costituito da coltivi ed una zona industriale. Il substrato della stazione di campionamento è costituito da ciottoli, massi e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluviale presenta formazioni arboree riparie e arbusti. La sezione trasversale del corso d’acqua non presenta interventi artificiali. Le risultanze analitiche hanno evidenziato un SACA “sufficiente” dal 97 al 2006 con prevalenza dell’Indice Biotico Esteso, costantemente in terza classe di qualità (IBE 7/6), con un LIM in seconda classe.

La classificazione per l’idoneità alla vita dei pesci definisce il tratto “ciprinicolo”. Le valutazioni raggiunte dipendono dalla temperatura dell’acqua e l’ossigeno disciolto. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, hanno evidenziato valori significativi per i parametri Cloroformio, 1,1,2,2 Tetrachloroetilene, 1,2 Dicloropropano, Toluene in quantità inferiore al limite della tab.1/A del nuovo decreto, per i primi due, e del decreto 367/03 per i due restanti. Per quanto riguarda i metalli non vi sono valori che superano il D. Lgs 152/06.
Il Fiume Candigliano è l'affluente più importante del Fiume Metauro, per portata ed estensione. Nasce dal monte Valneronte e, dopo 15 Km, accoglie le acque del Fiume Biscubio, presso Piobbico, e quelle del Fiume Burano in località Acqualagna.

Stazione 11/ME

La stazione situata a valle di Piobbico è in una zona di grande interesse paesaggistico. E' codificata 11/ME ed è collocata a 25 Km di distanza dalla sorgente e a 325m /s.l.m., dopo la confluenza con il Fosso Dell'Eremo. Il punto di campionamento presenta un substrato costituito da roccia e massi incassati con fondale piuttosto stabile. La fascia perifluviale presenta formazioni arboree riparie e arbusti; la sezione trasversale del corso d'acqua non presenta interventi artificiali. La qualità ambientale risulta dal '97 ad oggi in seconda classe di qualità con giudizio “buono”. L'IBE raggiunge una seconda classe di qualità con indice 9 evidenziando un peggioramento rispetto lo scorso anno che risultava in prima classe. L'incrocio LIM e I BE (9) produce una seconda classe di qualità poiché anche il LIM è corrispondente ad un secondo livello come accadeva nel 2005. La classificazione per la vita dei pesci è uguale al 2005 ovvero “salmonicola”. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, effettuate in un campionamento non programmato, e i metalli non hanno evidenziato valori significativi.
Il fiume Burano insieme al suo affluente fiume Bosso, forma un importante affluente di destra del Candigliano.

Stazione 14/ME

Il fiume Burano viene controllato attraverso la stazione denominata 14/ME, che si trova presso la località Smirra, in prossimità di Cagli, a 19,8 Km dalla sorgente e a 225 m/s.l.m.. Il territorio circostante comprende zone agricole ed un insediamento industriale. Il punto di campionamento possiede un substrato costituito da ciottoli e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluvia presenta formazioni arboree riparie, interrotte a tratti e arbusti. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali.

Il giudizio “sufficiente” del 2004 viene confermato “Buono”, come nel 2005. In seguito ad una segnalazione, nel 2004, è stato verificato un inquinamento causato da una lavanderia a monte della stazione di campionamento, che ha evidenziato una diminuzione di biodiversità delle comunità macrobentoniche. Al momento la ditta non è più in attività infatti il risultato dell’Indice Biotico Esteso, responsabile del miglioramento del SACA, si è spostato da una terza ad una seconda classe di qualità con IBE 8. La classificazione per la vita dei pesci è “ciprinicola” solo per la presenza di un dato della temperatura che, durante il periodo considerato di riproduzione, supera i 10 °C, mentre l’ossigeno disiolto non produce criticità. E’ necessario ricordare che il 2006 è stato un anno particolarmente caldo nel periodo invernale. Le analisi aggiuntive, relative al progetto Accordo programma Quadro, hanno evidenziato Cloroformio in concentrazioni inferiori alla tab.1/A del D.L. 152/06.

La Terbutilazina è inferiore al limite considerando la somma dei fitosanitari e biocidi, il 1,2 Dicloropropano (0,02 µg/l) è presente in quantità inferiore a quanto richiesto dal D.M. 367/03 e appartiene alla tab.1/B del D.L. 152/06 riguardante i parametri aggiuntivi da comunicare al Ministero. I metalli non presentano dati superiore il limite del vigente decreto.
Stazione 15/ME

A valle di Acqualagna, prima che il fiume venga contenuto nella diga del Furlo, è stata posizionata la stazione 15/ME, in prossimità di una area verde adibita a campeggio, a 32,1Km dalla sorgente e a 200 m/s.l.m..

Il punto di campionamento possiede un substrato costituito da ciottoli e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluviale presenta formazioni arboree riparie e arbusti. La sezione trasversale del corso d'acqua non evidenzia interventi artificiali. I dati a nostra disposizione evidenziano una qualità ambientale con giudizio "buono". La classificazione in riferimento alla vita dei pesci viene definita "ciprinicola", evidenziando un peggioramento rispetto il 2005 a causa di un unico valore di temperatura che supera i 10 °C nel periodo della riproduzione. L'Indice Biotico Esteso resta costantemente in seconda classe di qualità (IBE 8). Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, hanno evidenziato valori superiori ai limiti della tab.1/A della vigente normativa. I metalli non presentano dati significativi.

Stazione 14/ME Ossigeno disciolto confronto anni 2005-2006

![Ossigeno disciolto confronto anni 2005-2006](image-url)
Nell’asta fluviale del fiume Metauro incontriamo, a valle di Fossombrone, la stazione 17/ME, posizionata a 77,8 Km dalla sorgente e a 90 m/s.l.m.. Il territorio circostante è di tipo agricolo ed è presente un frantoio di ghiaia. Il punto di campionamento possiede un substrato costituito da ciottoli e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluviale presenta formazioni arboree riparie, interrotte a tratti, e arbusti. La sezione trasversale del corso d’acqua evidenzia un terrapieno, utilizzato come strada di comunicazione con la riva opposta, che viene regolarmente abbattuto dalle acque del fiume in eventi di piena.

Il giudizio “sufficiente” del 2005 migliora a “buono” determinato dall’Indice Biotico Esteso che si posiziona in seconda classe di qualità con indice uguale a 8 e un LIM in prima classe di qualità.

La classificazione per la vita dei pesci è corrispondente a "tratto ciprinico" per i valori della temperatura dell’acqua, i valori dell’ossigeno dischialto, invece, risultano migliorati rispetto all’anno 2004 e 2005. Le analisi aggiuntive, relative al progetto Accordo programma Quadro, hanno evidenziato il solvente 1,1,2,2 Tetracloroetilene legato a scarichi urbani o industriali, in particolare a lavanderie, è comunque presente in quantità molto basse, inferiore al limite per le acque dolci richiesto dalla normativa 152/06. Il Cloroformio, il 1,1,2, Tricloroetilene, e la Terbutilazina risultano anche essi inferiori al limite della Tab.1/A del suddetto decreto. Il Dibromoclorometano e il Diclorobromometano sono inferiori come somma al D.L.31/01 delle acque potabili. Il 1,2 Dicloroetilene e il 1,2 Dicloropropano (in media 0,01 µg/l presente in quantità inferiore a quanto richiesto dal D.M. 367/03), non considerati nella nuova normativa, fanno parte della Tab.1/B - Parametri aggiuntivi da monitorare nelle acque superficiali nell’elenco degli idrocarburi alifatici clorurati.

I metalli non presentano dati superiori al limite del vigente decreto.
Stazione 17/ME Ossigeno discolito
confronto anni 2005-2006

![Stazione 17/ME Ossigeno discolito confronto anni 2005-2006](image)

Stazione 20/ME

La successiva stazione si trova nella zona industriale di Bellocchi, nei pressi della città di Fano (20/ME), a 102,9 Km dalla sorgente e a quota 15 m/s.l.m.. In questa area si estende lo Stagno Urbani, rifugio di una numerosa fauna acquatica; la zona è gestita dalle associazioni naturalistiche. Il substrato è costituito da ciottoli e ghiaia a tratti instabile e movibile in eventi di piena. La fascia perifluviale presenta una copertura erbosa e arbustiva a tratti. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali.

La classificazione delle acque è “ciprinicola”, come nel 2004 e 2005, mentre nel 2003 risultava “non idonea”. L’unico dato critico è la temperatura dell’acqua. Le analisi aggiuntive, relative al progetto Accordo programma Quadro, cioè IPA, pesticidi, composti organici volatili, PCB hanno evidenziato valori superiori ai limiti di determinazione dei parametri Cloroformio, 1,1,2,2 Tetrachloroetilene e Terbutilazina inferiori ai limiti della Tab.1/A della normativa vigente. Per quanto riguarda i metalli, non vengono superati i limiti dettati del D. Lgs 152/06.

L’esame del sedimento, nei quali sono stati ricercati metalli ha evidenziato alti valori di Cromo (57,5 mg/Kgss) e Nichel (68,9 mg/Kgss), superiori a quanto previsto dalla tab.2 del DM 367/03. IPA, PCB e pesticidi hanno dato esito negativo.
Stazione 20/ME Ossigeno disciolto
confronto anni 2005-2006

Stazione 20/ME Temperatura acqua
confronto anni 2005-2006

Stazione 21/ME

La foce, codificata 21/ME, si trova a sud della città di Fano, a 107,9 Km dalla sorgente e sul livello del mare. In questo punto di campionamento l’alveo di piena è molto ampio, il substrato è costituito da ghiaia e limo quindi movibile in eventi di piena; a causa della sua mobilità non è in grado di offrire un ambiente stabile per la fauna. La fascia perifluviale è costituita da vegetazione arbustiva alternata a tratti erbosi e canneto. La sezione trasversale del corso d'acqua non evidenzia interventi artificiali. I dati analitici del 2006 definiscono questa stazione come “sufficiente” e “ciprinicola”. Il valore IBE corrisponde ad una terza classe con valore 6/7. La classificazione di idoneità alla vita dei pesci è data dai valori dell’ossigeno disciolto e dai dati relativi alla temperatura. Nella stazione 21/ME sono stati riscontrate le sostanze Diclorobromometano, e Cloroformio (inferiore tab.1/A) con valori inferiori, come somma, a quanto richiesto dalla normativa per le acque potabili D.L 31/01. Queste sostanze, dette trialometani, si riscontrano solitamente in seguito a clorazione. Il 1,1,2,2 Tetrachloroetilene è un solvente legato a
scarichi urbani o di lavanderie industriali ed è stato riscontrato, in un campione, con un
data molto elevato (78,4 µg/l). Il parametro è stato ripetuto ma non confermato, quindi è
stato considerato uno scarico puntuale e non considerato nella media poiché i restanti
valori risultano molto bassi (media 0,05 µg/l). Verranno effettuati altri campionamenti ed
una ricerca nel territorio circostante per verificarne la provenienza. Il 1,2 Dicloropropano,
il Toluene e il mp- Xilene inferiori a quanto riportato nel D.M. 367/03, sono solventi
utilizzati nell’industria.

Per quanto riguarda i metalli, i limiti dettati dal D. Lgs 152/06 non vengono
superati.

<table>
<thead>
<tr>
<th>Potabilizzatore</th>
<th>comune</th>
<th>Fiume</th>
<th>Classificazione parametri batteriologici</th>
<th>Classificazione parametri chimici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diga di Tavernelle</td>
<td>Serrungarina</td>
<td>Metauro</td>
<td>A3 per coliformi totali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Diga di S.Lazzaro</td>
<td>Fossombrone</td>
<td>Metauro</td>
<td>A3 per coliformi totali, coliformi fecali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Località Cerbara</td>
<td>Fano</td>
<td>Metauro</td>
<td>A3 per coliformi totali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Invaso Crivellini</td>
<td>Cagli</td>
<td>Burano</td>
<td>A3 per coliformi totali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Loc. Pozzi Cioppi</td>
<td>Urbania</td>
<td>Metauro</td>
<td>A3 per coliformi totali, coliformi fecali, streptococchi fecali, salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Loc. Pian Marzolino</td>
<td>Mercatello sul Metauro</td>
<td>Guinza</td>
<td>A3 per salmonelle</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
<tr>
<td>Loc. S Silvestro</td>
<td>Fermignano</td>
<td>Metauro</td>
<td>A3 per coliformi totali, coliformi fecali, streptococchi fecali, salmonelle</td>
<td>A2 per N totale</td>
</tr>
<tr>
<td>Loc. Cà Spadone</td>
<td>Urbino</td>
<td>Metauro</td>
<td>A3 per coliformi totali, coliformi fecali, streptococchi fecali,</td>
<td>A2 per N totale, Ba, NH4</td>
</tr>
</tbody>
</table>
Fiume Cesano

Il Fiume Cesano si origina sulle pendici NE del Monte Catria, segnando il confine con l’Umbria, scorre tra le province di Ancona e Pesaro-Urbino con un bacino idrografico di 412 Kmq. La lunghezza del suo corso è di 64 Km in cui sono state localizzate due stazioni di campionamento. Questo fiume, come molti altri della nostra provincia, ha carattere torrentizio, quindi è condizionato fortemente dalle precipitazioni e si trova facilmente in secca durante i mesi estivi.

Il programma di monitoraggio prevede, su tutte le stazioni, campionamenti mensili per parametri chimici e microbiologici e, stagionalmente, biologici.

L’indice SECA rappresenta il confronto tra LIM e IBE. L’indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell’All.2 sez.B del D.Lgs 152/99.

Stazione 3/CE

Il primo punto di monitoraggio del fiume Cesano si trova a 20 Km dalla sorgente e a 235 m/s.l.m., a valle di Pergola non lontano da una cascata. Il territorio che circonda il corso d’acqua è agricolo ed urbano.

L’alveo presenta un substrato costituito da ciottoli e massi stabilmente incassati che favoriscono il formarsi di microambienti diversi e stabili. La fascia perifluviale presenta formazioni arboree riparie e arbusti. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali.

La classificazione delle acque per la vita dei pesci definisce la stazione ciprinicola, come nel 2005 con un miglioramento rispetto gli anni 2003 e 2004 in cui risultava non idonea alla vita dei pesci. La causa della non idoneità era l’ azoto ammoniacale che attualmente presenta valori molto più bassi rispetto agli anni presedenti, salvo un valore in dicembre. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, hanno evidenziato valori di Diclorobromometano, Dibromoclorometano inferiori come somma al D.L. 31/01, Cloroformio, 1,1,2 Tricloroetilene e 1,1,2,2 Tetracloroetilene inferiori ai valori limite della tab.1/A del D.L. 152/06. Il 1,2 Dicloropropano, il Toluene e m-p Xilene inferiori ai limiti della 367/03. I metalli sono inferiori al limite di legge.

<table>
<thead>
<tr>
<th>Mesi</th>
<th>NH4-05</th>
<th>NH4-06</th>
</tr>
</thead>
<tbody>
<tr>
<td>gennaio</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>febbraio</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>marzo</td>
<td>1,5</td>
<td>1,5</td>
</tr>
<tr>
<td>aprile</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>maggio</td>
<td>2,5</td>
<td>2,5</td>
</tr>
<tr>
<td>giugno</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>luglio</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>agosto</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>settembre</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>ottobre</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>novembre</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>dicembre</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

La chiusura di bacino del fiume Cesano, localizzata a Marotta di Mondolfo, si trova in una zona urbanizzata ed agricola, a 62 Km dalla sorgente e, ovviamente, sul livello del mare. In questo punto di campionamento l’alveo di piena è molto ampio e presenta un substrato costituito da ghiaia e limo quindi movibile in eventi di piena e instabile.

La fascia perifluviale è costituita da vegetazione arbustiva alternata a tratti erbosi e canneto. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali.

Il SACA presenta una situazione altalenante che passa da un giudizio “scadente” (’98, 2000, 2001, 2002) a “sufficiente” (’97, ’99, 2003, 2004, 2005, 2006). Nell’anno in corso il giudizio “sufficiente” è influenzato dal dato IBE che evidenzia, in media, una terza classe di qualità (IBE 6). La classificazione per l'idoneità alla vita dei pesci è *ciprinicola* rilevando un miglioramento rispetto il 2005, in cui si presentava non idonea. La causa della non idoneità era l’azoto ammoniacale che risulta migliorato poiché non supera il valore imperativo di 1 mg/l. Nella stazione 5/CE è stato riscontrato il parametro Diclorobromometano, e Cloroformio (inferiore limite tab.1/A) con valore inferiore, come somma, a quanto richiesto dalla normativa per le acque potabili D.L. 31/01. Queste sostanze si riscontrano solitamente in seguito a clorazione. Il 1,1,2,2 Tetracloroetilene e i fitofarmaci Terbutilazina, Terbutilazina – desetil, e Metolachlor, come somma, inferiori ai limiti della tab.1/A del D.L.152/06. Il 1,2 Dicloroetilene, sgrassatore industriale, è presente in basse quantità (0,06 µg/l) ma non è compreso nella nuova normativa. Il 1,2 Dicloropropano, il Toluene, e il mp-Xilene, solventi utilizzati nell’industria, sono inferiori ai limiti del D.M. 367/03. I metalli sono inferiori al limite di legge.

L’esame del sedimento, nei quali sono stati ricercati metalli, IPA, PCB e pesticidi ha rivelato, per i metalli un valore del Nichel superiore a quanto richiesto dal D.M.367/03. Per quanto riguarda IPA, PCB e pesticidi non si sono verificati dati superiori al limite di determinazione.
Stazione 5/CE azoto ammoniacale
confronto anni 2005-2006

FIUME CESANO LIM/IBE 2006
Fiume Marecchia

Sorge sulle pendici del Monte Zucca (1236 m.), sull’Alpe della Luna, in territorio toscano, presso Badia Tedalda, attraversa le Marche per 61 Km. poi raggiunge la Romagna e sfocia nel comune di Rimini con una superficie di bacino di 507 Kmq. Gli affluenti più importanti sono: il torrente Presale, proveniente dalle pendici settentrionali dell’Alpe della Luna; il torrente Torbello, giunto dal Sasso Simone e Simoncello; il torrente Senatello che scende dalle pendici del Monte Fumaiolo; il torrente Messa, che si immette presso Novafeltria; il torrente Prena, Mazzocco e Maggio che raccolgono le acque della Repubblica di S. Marino. L’ambiente del corso d’acqua è spiccatamente torrentizio, la variabilità della portata con ricorrenti e rovinose piene determina modificazioni nell’assetto idrodinamico del corso d’acqua e delle comunità macrobentoniche. Nel tratto marchigiano sono stati scelti due punti di campionamento.

Il programma di monitoraggio prevede, su tutte le stazioni, campionamenti mensili per parametri chimici e microbiologici e stagionalmente l’IBE. L’indice SECA rappresenta il confronto tra LIM e IBE. L’indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell’All.2 sez.B del D.Lgs 152/99.

Stazione 1/MA

Il tratto di maggiore interesse paesaggistico si trova a Molino di Bascio (1/MA), nel comune di Casteldelci, a 10 Km dalla sorgente e a 400 m/s.l.m.. La stazione di campionamento presenta un ambiente circostante ricco di vegetazione, un alveo stabile e diversificato con massi e ciottoli che favorisce l’insediarsi delle comunità dei macroinvertebrati. La fascia perifluviale è costituita da formazioni arboree riparali e arbustive. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali.

Lo stato ecologico ed ambientale è “buono”, presenta una buona naturalità e biodiversità con acque limpide e ben ossigenate. Dal ’97 ad oggi è costantemente considerato un tratto di “buona qualità”. Il dato IBE ci fornisce una seconda classe di qualità con valore 9 rilevando un macrobentos debolmente alterato rispetto alla naturalità.

La classificazione per la vita dei pesci lo definisce come tratto “ciprinicolo” rilevando un peggioramento rispetto all’anno 2005 in cui si presentava salmonicolo a causa della temperature delle acque, l’ossigeno disciolto non presenta valori inferiori al valore imperativo. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, hanno evidenziato valori piuttosto bassi di Cloroformio, inferiore alla tab.1/A del nuovo decreto, 1,2 Dicloropropano e Toluene inferiori a quanto richiesto dal D.M. 367/03. I metalli non presentano valori superiori alla normativa vigente.
Stazione 3/MA

Il punto 3/MA si trova a Secchiano, nel comune di Novafeltria, a 34 Km dalla sorgente e a 170 m/s.l.m.. Il territorio circostante è di tipo agricolo ed urbano. Il corpo idrico presenta un alveo di piena molto grande, ricoperto di massi e ciottoli ben incassati e possiede una notevole turbolenza e velocità di corrente. La fascia perifluviale è costituita da vegetazione arbustiva alternata a tratti erbosi. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali. Non è insolito, durante i mesi estivi, verificare la mancanza d’acqua nel tratto fluviale. Nell’anno 2006, infatti, è risultato in secco dei mesi di agosto e settembre. Negli ultimi anni non abbiamo modificazioni nel giudizio di "sufficiente" causato dall’Indice Biotico Esteso che si posiziona in terza classe di qualità con valore medio 7. La classificazione nel 2003, nel 2004 e nel 2005 è stata definita "ciprinicola", a causa dei valori elevati dell’ossigeno discioltolo, nel 2006 è stato ritenuto necessario mantenere la classificazione ciprinicola in quanto non vi sono i dati di temperatura dei mesi più caldi, tuttavia i dati dell’ossigeno discioltolo non superano il valore imperativo. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, hanno evidenziato valori significativi per il Cloroformio, 1,1,2,2 Tetrachloroetilene, Benzene, comunque inferiori ai limiti della tab. 1/A del D. Lgs 152/06. Il 1,2 Dicloropropano e il Toluene sono presenti in tracce con concentrazioni inferiori al D.M. 367/03. Per quanto riguarda i metalli non si riscontrano valori superiori ai limiti del D. Lgs 152/06.

L’esame del sedimento, nei quali sono stati ricercati metalli, IPA, PCB e pesticidi ha rivelato valori inferiori ai valori limite proposti dalla 367/03.

Questa stazione di campionamento è, per la nostra regione, il punto più a valle dopo di che il fiume passa in Emilia Romagna.
Stazione 3/MA Ossigeno disgiolto
confronto anni 2005-2006

FIUME MARECCHIA LIM/IBE 2006
Torrente Tavollo

Il torrente Tavollo nasce a Mondaino sul Monte Zaccarelli a 421 m. s.l.m., nella regione Emilia Romagna, percorre la Regione Marche per 11Km. e sfocia nell'Adriatico presso il porto di Cattolica. Attraversa un paesaggio morfologicamente dolce con colline e pianure coltivate rappresentando il confine naturale delle Marche.

Il programma di monitoraggio prevede, nell'unica stazione, campionamenti mensili per parametri chimici e microbiologici e, stagionalmente, biologici. L'indice SECA rappresenta il confronto tra LIM e IBE. L'indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell'All.2 sez.B del D.Lgs 152/99.

Stazione 1/TA

L'unica stazione di campionamento, codificata 1/TA, si trova nella zona urbana di Gabicce, a 15 Km dalla sorgente e sul livello del mare, e rappresenta la chiusura del bacino del torrente Tavollo. L'alveo di piena è piuttosto piccolo, con un substrato costituito da limo; le rive presentano manufatti in cemento e la fascia perifluviale è formata da canneti e vegetazione arbustiva. Le sue acque presentano le caratteristiche di un inquinamento di tipo organico, caratteristico delle zone urbanizzate, infatti lo stato ecologico ed ambientale, è costantemente “pessimo”, giudizio confermato sia dai dati chimici, microbiologici e biologici. L'Indice Biotico Esteso, infatti, si posiziona in quinta classe di qualità per l'assenza di una comunità strutturata, infatti vi sono pochi taxa molto tolleranti all'inquinamento.

La costante classificazione “non idoneo alla vita dei pesci” è derivata dai parametri ossigeno dischiolto, azoto ammoniacale, ammoniaca non ionizzata, tensioattivi superiori ai valori guida e imperativi proposti dalla tabella 1/B dell'allegato 1 del D.Lgs. 152/06.

Per quanto riguarda i metalli è stato rilevato, in settembre, un dato del Nichel piuttosto elevato (70µg/l); tuttavia, considerando i campioni dei restanti mesi, la media risulta inferiore agli standard di qualità da conseguire secondo D.Lgs 152/06 per il 2008.

Nella stazione 1/TA sono stati riscontrati i trialometani derivati dalla clorazione delle acque con ipoclorito Diclorobromometano, Dibromoclorometano, Bromoformio,
Cloroformio in quantità inferiori, come somma, alla normativa 31/01 e alla tab.1/A per il cloroformio, però con concentrazioni medie significative. Il 1,1,2 Tricloroetilene, 1,1,2,2 Tetracloroetilene, solventi legati a scarichi urbani o industriali, in particolare a lavanderie, e fitofarmaci Terbutilazina-Desetil, terbutilazina, Metolachol con valori inferiori a quanto richiesto dalla normativa D.Lgs 152/06.

Il 1,1 Dicloroetano, componente della catena di produzione del PVC e il 1,2 Dicloropropano, sgrassatore usato nelle industrie, sono presenti in quantità inferiori al limite del D.M. 367/03. Il 1,2 Dicloroetilene, sgrassatore industriale, è presente in quantità media di 1,08µg/l, ma non è considerato in nessuna normativa.

Il Toluene, usato come sostituto del benzene, sia come reattivo che come solvente e lo Xilene (m-p xilene e o-xilene) sono presenti in quantità inferiori rispetto quanto previsto dal D.M. 367/03.
Stazione 1/TA Ossigeno dischiolto
confronto anni 2005-2006

Ossigeno dischiolto mg/l

FIUME TAVOLLO LIM/IBE 2006

LIVELLO
Fiume Conca

Il Fiume Conca è un bacino interregionale, che nasce dal monte Carpegna a 1415 m. s.l.m., attraversa le Marche fino a Sassofeltrio, e, dopo 41 Km, si getta in mare presso Misano Adriatico. Presenta un bacino imbrifero di circa 173 Kmq di cui 104 in zona marchigiana. Nel tratto fluviale, presso la località di Capriola, è presente un’opera di presa per la potabilizzazione delle acque per uso umano.

Il programma di monitoraggio prevede, nell’unica stazione, campionamenti mensili per parametri chimici e microbiologici e quattro volte l’anno l’Indice Biotico Esteso. L’indice SECA rappresenta il confronto tra LIM e IBE. L’indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell’All.2 sez.B del D.Lgs 152/99.

Stazione 1/CO

A Fratte è posizionato il punto di campionamento marchigiano, nel comune di Mercatino Conca, a 23 Km dalla sorgente e a 190 m di altitudine sul livello del mare.

Il territorio che gravita sul corso d’acqua è di tipo agricolo e urbano. L’alveo è ricoperto di massi e ciottoli, movibile a tratti. La fascia perifluviale è costituita da vegetazione arbustiva alternata a tratti erbosi. La sezione trasversale del corso d’acqua non evidenzia interventi artificiali. I dati a nostra disposizione ci forniscono una valutazione SACA “sufficiente” in quanto le popolazioni macrobentoniche scompaiono nei periodi di secca, quindi è necessario un adeguato periodo di tempo affinché possano ricolonizzare. Dai dati in nostro possesso otteniamo un LIM in secondo livello ed un IBE in terza classe con valore 7, che equivale ad una comunità poco diversificata con struttura alterata rispetto a quanto atteso.

La classificazione delle acque per la vita dei pesci viene definita “non idonea” poiché questo fiume risulta in secca per periodi molto lunghi. Nel 2006, anno eccezionale per mancanza di eventi meteorici, è rimasto in secca da luglio a dicembre, quindi, secondo
quanto prevede il punto 1.1.1 dell’Allegato 1 parte terza del D.Lgs. 152/2006, non può essere considerato un corso d’acqua significativo poiché ha avuto una portata uguale a zero per più di 120 giorni durante anno. Nel mese di giugno si è presentato un valore elevato di ammoniaca non ionizzata che ha definito la classificazione. I dati dei metalli non rilevano valori superiori alla normativa vigente.

Il fiume Conca non è stato incluso nel monitoraggio APQ in quanto nel 2005 non ha presentato criticità.

D. Lgs. 152/2006 All.2 sez. A tab. 1/A Classificazione delle acque superficiali destinate alla produzione di acque potabili. Anno 2006

<table>
<thead>
<tr>
<th>Potabilizzatore</th>
<th>comune</th>
<th>Fiume</th>
<th>Classificazione parametri batteriologici</th>
<th>Classificazione parametri chimici</th>
</tr>
</thead>
<tbody>
<tr>
<td>Località Capriola</td>
<td>Montecerignone</td>
<td>Conca</td>
<td>A3 per coliformi totali, coliformi fecali, streptococchi fecali, salmonelle</td>
<td>A2 per N totale, Ba. NH4</td>
</tr>
</tbody>
</table>

Torrente Arzilla

Il Torrente Arzilla nasce dalla confluenza dei Fossi Molinaccio e Calcinari sulle pendici orientali di M. Gaudio (m. 443 s.l.m.), M. Abullo (m. 513 s.l.m.), M. della Croce (m. 552 s.l.m.) e M. S. Giovanni (m. 430 s.l.m.). Il bacino idrografico ha un'estensione di 105 kmq e la foce è situata a nord ovest della città di Fano. Il programma di monitoraggio prevede, nell’unica stazione, campionamenti mensili per parametri chimici e microbiologici e, stagionalmente, biologici. L’indice SECA rappresenta il confronto tra LIM e IBE. L’indice SACA viene raggiunto confrontando il SECA con i valori dei metalli relativi alla tab.1/B dell’All.2 sez.B del D.Lgs 152/99.
Stazione 1/AR

La stazione 1/AR si trova in località Carmine, in prossimità della città di Fano, a 28 Km dalla sorgente e a livello del mare. Il territorio circostante è di tipo urbano. L’alveo possiede un substrato formato da limo e la vegetazione perifluviare è costituita essenzialmente da canneti. In seguito al monitoraggio annuale del 2006 il SACA è confermato come nel 2004 e 2005, “scadente”, a causa del valore IBE. Quest’ultimo corrisponde a 5/4 e conseguente quarta classe di qualità, con comunità macrobentoniche poco diversificate ed poco equilibrate. La classificazione per la vita dei pesci risulta "non idonea" a causa dei valori dei solidi sospesi. I dati relativi all’ammoniaca non ionizzata e all’ossigeno disciolto sono migliorati rispetto l’anno scorso. Le analisi aggiuntive, IPA, pesticidi, composti organici volatili, PCB relative al progetto Accordo programma Quadro, non sono state effettuate poiché lo scorso hanno non si sono evidenziate criticità. Per quanto riguarda i metalli non vi sono superamenti dei limiti dettati dal D. Lgs 152/06.
Conclusioni

Come si evince dalla tabella riassuntiva sono stati effettuati campionamenti di acqua di fiume in alcune stazioni non incluse nel programma, aumentate alcune frequenze di analisi ed eseguiti più campioni per i fitosanitari rispetto al programma previsto.

Dai risultati delle analisi delle acque emerge che i composti i presenti, con valori superiori al limite di determinazione, ma inferiori ai limiti di legge esistenti, nella provincia di Pesaro-Urbino, sono i seguenti:

- **Cloruro di vinile (11/FO)** il quale è un costituente base del PVC per produzione di prodotti plastici. Viene prodotto anche dalla degradazione del tricloroetilene, tricloroetano e il tetracloroetilene;
- **1,1 Dicloroetano (3/FO, 11/FO, 1/TA)** che fa parte della catena di produzione del PVC;
- **Trialometani: Cloroformio Diclorobromometano Dibromoclorometano Bromoformio**, sono stati riscontrati, almeno uno dei quattro composti, in tutte le stazioni monitorate, escluse 4/ME e 11/ME. Sono cancerogeni, epatotossici, derivati dalla clorazione delle acque con ipoclorito.
- **1,2 Dicloroetilene, (3/FO, 11/FO, 17/ME, 1/TA), 1,1 Dicloroetilene (5/CE)** utilizzati in industria come sgrassatori;
- **1,1,2,3-ticloroetilene (10/FO, 11/FO, 17/ME, 3/CE, 1/TA)** o trielina usati nelle industrie e lavanderie;

Nelle analisi relative ai sedimenti sono stati riscontrati metalli in tutte le stazioni, in particolare **Cromo (20/ME)** e **Nichel (20/ME, 5/CE)** in quantità superiori a quanto richiesto dal D.M.367/03.

Considerando il confronto dei risultati con lo scorso anno possiamo affermare che è stata rilevata la presenza un numero maggiore di sostanze pericolose prioritarie, superiori al limite di determinazione, e in più stazioni, questo probabilmente è dovuto all’applicazione di apparecchiature più sensibili per l’esecuzione delle analisi.

Per il monitoraggio relativo all’Accordo Programma Quadro del 2007 verranno mantenute le stazioni esaminate nel 2006, ovvero verranno integrate alle stazioni nazionali quelle che hanno rilevato criticità: 1/TA, 11/FO, 21/ME, 5/CE, 14/ME, 17/ME.
Tabella risultati sedimenti 2006

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmio</td>
<td>mg/Kg ss</td>
<td>132</td>
<td>90</td>
<td>98</td>
<td>88</td>
<td>300</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>PCB 52</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 77</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 81</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 128</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 138</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 153</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 169</td>
<td>mg/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td></td>
</tr>
<tr>
<td>PCB totali</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>4</td>
</tr>
<tr>
<td>Naftalene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>35</td>
</tr>
<tr>
<td>Acenaftene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Acenaftilenene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Fenantrene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,010</td>
</tr>
<tr>
<td>Fluorantene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,010</td>
</tr>
<tr>
<td>Pirene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,010</td>
</tr>
<tr>
<td>Benzo(a)antracene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Crisene+Trifenilen</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(e)pirene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Compuesto</td>
<td>Concentrazione mg/Kg ss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzo(a,h)antracene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perilene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pirene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,005</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Benzo(b)fluorene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzo(c)fenantrene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzoantrafo(2,1,d)ti- ofene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibenzotiofene</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPA totali</td>
<td>0,055</td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Monitoraggio eseguito dal Dipartimento di Ancona

La rete di rilevamento delle acque superficiali presa in considerazione durante l’attività di monitoraggio nell’anno 2006 comprende, come da ormai diversi anni, 13 punti dislocati lungo le asti fluviali dei corpi idrici significativi compresi nel territorio della Provincia di Ancona (Tabella 1).

Per quanto concerne la presente relazione, il monitoraggio e la classificazione delle acque superficiali sono stati effettuati sulla base di quanto previsto dal D. Lgs. n. 152/1999; va però tenuto presente che il D. Lgs. 03/04/2006 n.152 Norme in materia ambientale costituisce, invece, il nuovo riferimento normativo nazionale. Il recente D. Lgs. n. 152/2006 introduce nuovi standard di qualità per quanto riguarda gli inquinanti chimici (sostanze prioritarie e sostanze pericolose prioritarie) e prevede nuovi monitoraggi per i parametri biologici ed idromorfologici. Conseguentemente tutto il sistema di monitoraggio delle acque superficiali dovrà essere adeguato; al momento non sono stati ancora definiti, a livello nazionale, i criteri oggettivi per la classificazione dei corpi idrici ai sensi del D. Lgs. n. 152/2006.

Alla luce di quanto esposto sono stati rilevati a cadenza mensile in tutti i punti di campionamento i parametri chimico-fisici richiesti dal D. Lgs. n. 152/1999 e a cadenza trimestrale è stata effettuata l’analisi biologica mediante utilizzo dell’indice IBE.

Oltre al monitoraggio ordinario mensile delle acque superficiali, per migliorare la comprensione della dinamica delle pressioni e dei fenomeni che influenzano lo stato dei corpi idrici interessati, sono state effettuate, come previsto dall’Accordo di Programma Quadro (APQ) “Tutela delle acque e gestione integrata delle risorse idriche”, quattro campagne di presa di campioni per la ricerca di sostanze pericolose (fitofarmaci, IPA e VOC – Tabella 2) nelle acque delle stazioni che fanno parte della rete nazionale (indicati in Tabella 1 con l’asterisco rosso) e una campagna di prelievi per la ricerca di fitofarmaci, IPA, PCB e metalli nei sedimenti fluviali di tre stazioni (07MI, 14b/ES e 10/MU), una per ciascun bacino idrografico. In Tabella 3 si riportano integralmente i risultati del monitoraggio dei sedimenti. Non essendo attualmente disponibile un riferimento normativo specifico per la classificazione della qualità dei sedimenti fluviali in funzione del contenuto degli inquinanti, i risultati sono stati confrontati con i limiti della colonna A della Tabella 1 dell’All.5 del D. Lgs.152/2006.

Il monitoraggio delle sostanze pericolose su acqua e sedimenti prevista dall’APQ non è altro che l’attuazione del D.M. del 6 novembre 2003 n. 367: Regolamento concernente la fissazione di standard di qualità nell’ambiente acquatico per le sostanze pericolose ai sensi dell’art. 3 comma 4 del D. Lgs.152/99; occorre però osservare che per quanto riguarda gli standard fissati per il 2008 il D.M. 367/2003 ha subito la sostituzione dei valori (relativi ad alcune sostanze) con il recente D. Lgs. n. 152/2006 (Tabella 2 e Tabella 3).

La ricerca dei VOC nelle acque è stata estesa a tutte le stazioni (anche quelle non comprese nella rete nazionale) perché dal monitoraggio effettuato nel 2005 sono risultati i microinquinanti più presenti (sebbene entro i limiti della normativa) nei nostri corpi idrici.

Ci è sembrato inoltre opportuno ricercare, durante le quattro campagne, gli IPA anche nella stazione 16/ES, data la vicinanza della raffineria API al punto di prelievo (foce del fiume Esino).
Sulla base della metodologia del D. Lgs. n. 152/1999 la raccolta dei dati relativi all’attività dell’anno 2006 ha permesso di giungere ad una classificazione dei corpi idrici superficiali in cinque classi (elevato, buono, sufficiente, scadente, pessimo), che definiscono lo stato di qualità ambientale (SACA). Lo stato ambientale si ottiene dalla valutazione dello stato ecologico (SECA) e dello stato chimico del corpo idrico. La determinazione dello stato ecologico si effettua combinando il livello di inquinamento dei macrodescrittori (LIM), definito dai parametri chimici e microbiologici, con il risultato dell’Indice Biotico Esteso (IBE), derivante invece dall’analisi della comunità dei macroinvertebrati bentonici mediante l’elaborazione degli indici sintetici di qualità previsti dal D.Lgs. 152/99 (LIM, IBE, SECA, SACA) e di individuare i parametri maggiormente responsabili dell’andamento della qualità delle acque. Lo stato chimico invece deriva dall’analisi dei principali microinquinanti chimici ricercati, ossia alcuni metalli pesanti, la cui ricerca è stata effettuata mensilmente. Con lo specifico progetto di monitoraggio previsto dall’Accordo di Programma Quadro la definizione dello stato chimico si arricchisce di nuovi dati relativi a fitofarmaci e altre sostanze pericolose (IPA e VOC) (Tabella 2) ricercati nelle quattro campagne effettuate nei mesi di maggio, luglio, ottobre e dicembre.

Tabella 1: Punti di prelievo nei corsi d’acqua della Provincia di Ancona

<table>
<thead>
<tr>
<th>Codice punti di prelievo</th>
<th>Corpo idrico</th>
<th>Bacino idrografico</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES05 *</td>
<td>ESINO</td>
<td></td>
</tr>
<tr>
<td>ES09 *</td>
<td>ESINO</td>
<td></td>
</tr>
<tr>
<td>ES14B *</td>
<td>ESINO</td>
<td></td>
</tr>
<tr>
<td>ES16</td>
<td>ESINO</td>
<td></td>
</tr>
<tr>
<td>GI04</td>
<td>GIANO</td>
<td></td>
</tr>
<tr>
<td>GI07</td>
<td>GIANO</td>
<td></td>
</tr>
<tr>
<td>SE05</td>
<td>SENTINO</td>
<td></td>
</tr>
<tr>
<td>MI04 *</td>
<td>MISA</td>
<td></td>
</tr>
<tr>
<td>MI07</td>
<td>MISA</td>
<td></td>
</tr>
<tr>
<td>NE05</td>
<td>NEVOLA</td>
<td></td>
</tr>
<tr>
<td>MU10 *</td>
<td>MUSONE</td>
<td></td>
</tr>
<tr>
<td>MU14</td>
<td>MUSONE</td>
<td></td>
</tr>
<tr>
<td>AS06</td>
<td>ASPIO</td>
<td></td>
</tr>
</tbody>
</table>

Fiume Esino

Bacino Esino

Fiume Misa

Bacino Misa

Fiume Musone

Bacino Musone
Tabella 2: Sostanze inquinanti ricerche durante il monitoraggio del 2006 e standard di qualità riferito alla media aritmetica annuale delle concentrazioni (ai sensi del D. Lgs. 152/2006 e del D.M. 367/2003)

[P: sostanze prioritarie PP: sostanze pericolose prioritarie]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>METALLI</td>
<td>Arsenico</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cadmio PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mercurio PP</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cromo</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nichel P</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Piombo P</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>IPA</td>
<td>IPA totale PP</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>benzo(a)pirene</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>benzo(b)fluorantene</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>benzo(k)fluorantene</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>benzo(g,h,i)perilene</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>indeno(1,2,3-cd)piirene</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antracene</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluorantene</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Naftalene</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>PESTICIDI</td>
<td>antiparassitari totali</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Simazina PP</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atrazina PP</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Propazina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Malathion</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorprofam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Parathion metile</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trifluralin PP</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbutrina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbutilazina-desetil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terbutilazina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cianazina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lindano</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eptachloro</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eptachloro epossido</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Esaclorobenzene PP</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aldrin</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dieldrin</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPPDE</td>
<td>0.0002</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Endrin</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPDDT</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PPDDT</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OPPDDD</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alachlor P</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cicloalo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pendimetalin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimetaclor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pemetrina</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Molinate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diazinon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linuron</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>VOC</td>
<td>metilene cloruro</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clorformio P</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2dichloroetano P</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,1trichloroetano</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>carbonio tetrachloro</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2trichloroetileene</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>diclorobromometano</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dibromochlorometano</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1,2,2tetrachloroetileene</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,2dichloropropano</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benzene</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Etibenzene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>p-xilene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>o-xilene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>m-xilene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,1dicloroetilene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isopropilbenzene</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PCB totali</td>
<td>0.00006</td>
<td></td>
</tr>
</tbody>
</table>
Tabella 3: Sostanze inquinanti ricercate durante il monitoraggio del 2006 nei sedimenti fluviali e confronto con concentrazione soglia di contaminazione (Tab. 1 colonna A Allegato 5 del D. Lgs. 152/2006)

<table>
<thead>
<tr>
<th>Parametri</th>
<th>U.M.</th>
<th>F. Misa (7/MI)</th>
<th>F. Esino (14b/ES)</th>
<th>F. Musone (10/MU)</th>
<th>Tab. 1 colonna A Allegato 5 (DD Lgs. 152/2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmio</td>
<td>g/Kg ss</td>
<td>111 (7)</td>
<td>159 (11)</td>
<td>108 (7)</td>
<td>2,000</td>
</tr>
<tr>
<td>Cromo</td>
<td>g/Kg ss</td>
<td>15.300 (7)</td>
<td>16.729 (11)</td>
<td>34.233 (7)</td>
<td>150.000</td>
</tr>
<tr>
<td>Arsenico</td>
<td>g/Kg ss</td>
<td>1.552 (7)</td>
<td>2.191 (11)</td>
<td>1.950 (7)</td>
<td>20.000</td>
</tr>
<tr>
<td>Ferro</td>
<td>g/Kg ss</td>
<td>9,146.739 (7)</td>
<td>11,451.681 (11)</td>
<td>16,087.500 (7)</td>
<td>16.087.500</td>
</tr>
<tr>
<td>Vanadio</td>
<td>g/Kg ss</td>
<td>24.059 (7)</td>
<td>24.696 (11)</td>
<td>70.958 (7)</td>
<td>90.000</td>
</tr>
<tr>
<td>Piombo</td>
<td>g/Kg ss</td>
<td>7.428 (7)</td>
<td>11.950 (11)</td>
<td>7.692 (7)</td>
<td>100.000</td>
</tr>
<tr>
<td>Alluminio</td>
<td>g/Kg ss</td>
<td>4.046.739 (7)</td>
<td>2.967.479 (11)</td>
<td>14,527.500 (7)</td>
<td>14,527.500</td>
</tr>
<tr>
<td>Rame</td>
<td>g/Kg ss</td>
<td>15.522 (7)</td>
<td>25.891 (11)</td>
<td>23.833 (7)</td>
<td>120.000</td>
</tr>
<tr>
<td>Zinco</td>
<td>g/Kg ss</td>
<td>22.728 (7)</td>
<td>24.895 (11)</td>
<td>37.917 (7)</td>
<td>120.000</td>
</tr>
<tr>
<td>Mercurio</td>
<td>g/Kg ss</td>
<td>49.891 (7)</td>
<td>79.664 (11)</td>
<td>59.583 (7)</td>
<td>150.000</td>
</tr>
<tr>
<td>Idrocarburi Totali</td>
<td>mg/Kg ss</td>
<td>45</td>
<td>495 (7)</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Aclor</td>
<td>g/Kg ss</td>
<td>0,40</td>
<td>0,30</td>
<td>0,20</td>
<td>10</td>
</tr>
<tr>
<td>4'-DDT</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>2'-DDT</td>
<td>g/Kg ss</td>
<td>0,40</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>4'-DDE</td>
<td>g/Kg ss</td>
<td>0,50</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>2'-DDE</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>4'-DDD</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>2'-DDD</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>DDE's Totali</td>
<td>g/Kg ss</td>
<td>0,95</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alfa HCH</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>beta HCH</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>gamma HCH</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>delta HCH</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Aldrin</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>g/Kg ss</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
<td><0,05</td>
</tr>
<tr>
<td>Essaclorbenzene</td>
<td>g/Kg ss</td>
<td>0,10</td>
<td>0,05</td>
<td>0,05</td>
<td>50</td>
</tr>
<tr>
<td>PCB 52</td>
<td>g/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>PCB 77</td>
<td>g/Kg ss</td>
<td>0,1</td>
<td>0,2</td>
<td>0,1</td>
<td></td>
</tr>
<tr>
<td>PCB 81</td>
<td>g/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>PCB 128</td>
<td>g/Kg ss</td>
<td><0,1</td>
<td>0,1</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>PCB 138</td>
<td>g/Kg ss</td>
<td>0,2</td>
<td>0,3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>PCB 153</td>
<td>g/Kg ss</td>
<td>0,2</td>
<td>0,3</td>
<td>0,2</td>
<td></td>
</tr>
<tr>
<td>PCB 169</td>
<td>g/Kg ss</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
<td><0,1</td>
</tr>
<tr>
<td>PCB totali</td>
<td>g/Kg ss</td>
<td>0,5</td>
<td>0,9</td>
<td>0,5</td>
<td>60</td>
</tr>
<tr>
<td>Naftalen</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Acenafene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Acenafilenene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Fenantrene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Fluorantene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Pirene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)antracene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,5</td>
</tr>
<tr>
<td>Crisene+Trifenilene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(b+k+l)fluorantene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)pirene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo(b)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo(b)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo(c)fenantrene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(g,h,i)perilene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Indeno(1,2,3-c,d)pirene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>0,1</td>
</tr>
<tr>
<td>Benzo(b)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(c)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Benzo(a)fluorene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>Dibenzo(a,h)anthracene</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td></td>
</tr>
<tr>
<td>IPA totali</td>
<td>mg/Kg ss</td>
<td><0,005</td>
<td><0,005</td>
<td><0,005</td>
<td>10</td>
</tr>
</tbody>
</table>
In generale nel corso del 2006 lo stato di qualità ambientale dei corsi d’acqua (SACA) è risultato pressoché inalterato rispetto l’anno precedente (Tabella 4) fatta eccezione per quattro stazioni (7/GI, 6/AS, 4/MI e 7/MI) dove rispettivamente il SACA è peggiorato nelle prime due e migliorato nelle altre due. Il SACA è determinato in ogni punto di campionamento dallo stato ecologico (SECA) in quanto lo stato chimico (determinato come sopra esposto) è sempre risultato inferiore ai valori soglia previsti dal recente D. Lgs. n. 152/2006 “Norme in materia ambientale”.

<table>
<thead>
<tr>
<th>Codice stazioni</th>
<th>SACA 2004</th>
<th>SACA 2005</th>
<th>SACA 2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/ES</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9/ES</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14b/ES</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16/ES</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4/GI</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7/GI</td>
<td>4</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5/SE</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4/MI</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7/MI</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5/NE</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10/MU</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14/MU</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6/AS</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

La Tabella 5 riporta i dati risultanti del LIM, IBE, SECA e SACA relativi al monitoraggio del 2006. Si nota che in quattro punti di campionamento i risultati degli indici LIM e IBE concordano nella stessa classe di qualità (stesso colore); in un caso (4/GI) la classe IBE è maggiore rispetto al livello espresso dal LIM; mentre nelle altre sette stazioni di prelievo è il livello del LIM ad essere maggiore rispetto alla classe espressa dall’IBE, rivelando forse un tipo di inquinamento e un deficit del processo autodepurativo del corso d’acqua che non vengono captati dal LIM. Per questo motivo in queste ultime stazioni lo stato ecologico (SECA) è stabilito dall’IBE.

Legenda:

- Classe 1 - Elevato
- Classe 2 – Buono
- Classe 3 - Sufficiente
- Classe 4 – Scadente
- Classe 5 - Pessimo
Tabella 5: Confronto tra risultati del LIM, dell’IBE, del SECA e del SACA – monitoraggio 2006

<table>
<thead>
<tr>
<th>Codice</th>
<th>LIM</th>
<th>IBE</th>
<th>SEC</th>
<th>SAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/ES</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9/ES</td>
<td>2</td>
<td>3/2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14b/ES</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>16/ES</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4/GI</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7/GI</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5/SE</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4/MI</td>
<td>2</td>
<td>3/2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7/MI</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5/NE</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10/MU</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14/MU</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6/AS</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Dal punto di vista biologico sono solo due i punti di campionamento che ospitano comunità di macroinvertebrati ben strutturate e diversificate e adeguate alla tipologia fluviale delle stazioni (IBE di classe 1, di colore azzurro, e IBE di classe 2, di colore verde).

Le stazioni di campionamento che risultano essere più compromesse (SACA scadente in arancione e SACA pessimo in rosso) sono quelle del bacino del fiume Musone e la stazione a valle del centro di Fabriano (7/GI) sull’asta fluviale del torrente Giano, affluente del fiume Esino.

In generale i parametri maggiormente interessati nella classificazione delle acque idonee alla vita dei pesci sono azoto ammoniacale, ammoniaca non ionizzata e nitriti.

Tabella 6: Classificazione delle acque idonee alla vita dei pesci relativa ad ogni punto di campionamento

<table>
<thead>
<tr>
<th>Codice punti di prelievo</th>
<th>Classificazione delle acque idonee alla vita dei pesci</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES05</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ES09</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ES14B</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>ES16</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>GI04</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI SALMONIDI</td>
</tr>
<tr>
<td>GI07</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>SE05</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI SALMONIDI</td>
</tr>
<tr>
<td>MI04</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>MI07</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>NE05</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>MU10</td>
<td>ACQUE IDONEE ALLA VITA DEI PESCI CIPRINIDI</td>
</tr>
<tr>
<td>MU14</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
<tr>
<td>AS06</td>
<td>ACQUE NON IDONEE ALLA VITA DEI PESCI</td>
</tr>
</tbody>
</table>

Di seguito viene descritto l’andamento di ogni bacino fluviale prendendo in considerazione ogni singolo punto di prelievo dislocato su di esso.
Fiume Esino

Il fiume Esino nasce in provincia di Macerata dalle pendici orientali del monte L’Antica, a circa 1000 m di quota. Dopo un percorso di circa 85 Km sfocia nel mare Adriatico in prossimità di Falconara Mari tta. La maggior parte del bacino, la cui estensione complessiva è di 751,90 Km2, ricade nel territorio della provincia di Ancona per 504,66 Km2.

Così come programmato insieme alla Regione Marche da diversi anni, sono state individuate su questo corso d’acqua 7 stazioni di controllo, di cui 4 sull’asta principale, 2 sull’affluente Torrente Gian o ed 1 sull’affluente Torrente Sentino, descritte nel senso monte-valle come di seguito riportato.

Delle stazioni sull’asta principale la più a monte è quella con codice 05/ES. Nel complesso i dati evidenziano una qualità ambientale sufficiente (SACA 3). I prelievi delle acque durante il monitoraggio del 2006 hanno evidenziato valori relativamente alti per il parametro Escherichia coli (Grafico 1) che rappresenta la principale criticità tra i vari macrodescrittori del LIM e che è facilmente associabile a reflui provenienti da insediamenti urbani.

Gli effetti di tale situazione si ripercuotono anche sulla comunità di macroinvertebrati che nel complesso fa registrare un IBE di classe III.

Per quanto riguarda lo stato chimico non si sono evidenziate criticità dovute alle sostanze pericolose ricercate (metalli, IPA, pesticidi e VOC)

Le acque di tale punto del fiume Esino sono inoltre risultate idonee alla vita dei pesci ciprinidi; le analisi chimiche infatti non hanno registrato nessun dato superiore ai valori soglia della Tab. 1/B dell’all. 2 sezione B del D. Lgs. 152/99.

Grafico 1: Il parametro più critico per la qualità delle acque della stazione 05/ES è risultato la carica batterica

La stazione 09/ES, situata di fronte alla cava di arenaria della Gola della Rossa, nel comune di Serra S.Quirico, costituisce un punto estremamente importante dal punto di vista naturalistico, in quanto si trova immediatamente a valle della Gola della Rossa (ritenuta Zona a Protezione Speciale ZPS) in cui l’Esino si arricchisce di nuove acque sorgive senza peraltro ricevere significativi carichi
inquinati, sebbene negli ultimi anni le captazioni di Gorgovivo abbiano ridotto tale quantitativo di acque.

Nel complesso i dati evidenziano una qualità ambientale sufficiente (SACA 3).

Il Livello di Inquinamento da Macrodescrittori è caratterizzato da un valore complessivo pari a 2 di cui la criticità più evidenziabile è rappresentata dalla carica batterica (Grafico 2).

L’Indice Biotico Esteso è caratterizzato da una classe intermedia II/III, indicando un leggero miglioramento rispetto alla classe III dell’anno precedente.

Lo stato chimico non incide sulla classificazione finale in quanto non sono state riscontrate concentrazioni elevate di sostanze pericolose.

Grafico 2: Il parametro più critico per la qualità delle acque della stazione 09/ES è risultato la carica batterica

Le acque di tale punto del fiume Esino dal punto di vista chimico sono risultate idonee alla vita dei pesci ciprinicoli; le analisi infatti non hanno registrato nessun dato superiore ai valori soglia della Tab. 1/B dell’all. 2 sezione B del D. Lgs. 152/99.

Il punto di campionamento successivo è il 14B/ES, in località La Chiusa, nella bassa valle dell’Esino. Nel tratto che comprende questa stazione e la stazione precedente il fiume attraversa insediamenti urbani ed industriali e per ultimo il centro di Jesi. Poco a monte di questa stazione inoltre il fiume riceve prima le acque del Torrente Granita e poi i reflui del Depuratore di Jesi.

Nel complesso i dati evidenziano una qualità ambientale sufficiente (SACA 3).

Rispetto al 2005 si registra un miglioramento del Livello di Inquinamento da Macrodescrittori descritto da un passaggio di classe da 3 a 2. Il parametro critico che dà il peggior contributo al LIM è rappresentato dalla carica batterica (Grafico 3).

La comunità di macroinvertebrati monitorata durante l’anno è descritta da una classe III.
La ricerca dei sostanze pericolose nelle quattro campagne effettuate non hanno evidenziato nessuna situazione critica.

Le analisi chimiche conferiscono invece a tali acque l'idoneità alla vita dei pesci ciprinidi.

In tale punto di campionamento è stato effettuato nel mese di luglio anche un prelievo di sedimento per la ricerca di sostanze pericolose (metalli, IPA, pesticidi e PCB). In Tabella 3 è posto in evidenza (cerchiato in rosso) il risultato della ricerca di Idrocarburi Policiclici Aromatici in tale punto di prelievo. Il confronto con il valore della concentrazione soglia di contaminazione nel suolo, fa registrare un superamento, l’unico degno di nota e per il quale vale la pena ripetere le analisi durante il monitoraggio previsto nell’anno 2007.

Il punto di campionamento 16/ES è quello più vicino alla foce del fiume Esino, a valle della confluenza con il fosso Triponzio.

Le caratteristiche chimico-batteriologiche delle acque di questa stazione di prelievo sono sovrapponibili a quelle della stazione precedente, mantenendo inalterato il punteggio di LIM e conservando la stessa criticità di presenza elevata di carica batterica (Grafico 4). Si registra anche in questo punto un peggioramento del LIM con un passaggio di classe da 2 a 3.

La qualità biologica è espressa da un IBE di classe 3 che assegna, in accordo con il LIM, una classe di qualità ambientale sufficiente (SACA 3).

Lo stato chimico non influisce sulla classificazione in quanto sono state rinvenute solo alcune delle sostanze pericolose ricercate (soprattutto metalli pesanti tra cui il nichel) e con concentrazione trascurabile.

Alla luce dei risultati delle analisi tali acque sono idonee alla vita dei pesci ciprinidi.
Stazione 16/ES - Andamento Escherichia coli

Grafico 4: Il parametro più critico per la qualità delle acque della stazione 16/ES è risultato la carica batterica

Nella stazione 4/GI, localizzata più a monte sull’asta fluviale del Torrente Giano, affluente del fiume Esino, la qualità complessiva delle acque risulta buona (il SACA è 2), confermando i risultati degli anni precedenti. Le caratteristiche chimico-batteriologiche delle acque sono buone e la comunità di macroinvertebrati ben strutturata e diversificata e adeguata alla tipologia fluviale della stazione (IBE di classe I). Oltre all’assenza di particolari pressioni a monte del punto di campionamento la comunità macrobentonica è sostenuta dalle numerose strutture di ritenzione che offre l’alveo (massi e vegetazione acquatica) e dall’abbondante fascia di vegetazione perifluviale che caratterizza l’ambiente circostante il corso d’acqua.

A conferma dell’ottima qualità dell’ambiente fluviale di questo punto di campionamento le acque risultano idonee alla vita dei pesci salmonidi.

Lo stato chimico ricavato dai metalli e dalla ricerca di composti organici volatili (VOC) non evidenzia situazioni critiche. Tra le sostanze ritrovate si segnala comunque la presenza di alcuni composti organici volatili (1,2 Dicloropropano, 1,1,2 Tricloroetilene, cloroformio e 1,1,2,2 Tetracloroetilene) di cui gli ultimi due presenti in tabella 1/A dell’allegato 1 della parte terza del D. Lgs. 152/2006. La presenza di VOC nelle acque di questo punto di controllo era già stata segnalata durante il monitoraggio dello scorso anno; le concentrazioni rinvenute sono comunque tutte al di sotto dei valori soglia riportati nella suddetta tabella.

La stazione 7/GI, a monte della confluenza con il fiume Esino e a valle del centro urbano ed industriale di Fabriano, evidenzia una scadente qualità ambientale delle acque (SACA 4).

Le caratteristiche chimico-batteriologiche delle acque subiscono un peggioramento rispetto alla stazione a monte 4/GI, effetto dei reflui provenienti dall’impianto di depurazione civile della città di Fabriano e degli scarichi industriali. Il 2006 ha evidenziato una caduta.
Risultano particolarmente critici per il LIM l’azoto ammoniacale, il fosforo totale e la carica batterica (Grafico 5 a/b/c). L’analisi della comunità macrobentonica, in accordo con il risultato del LIM, è descritta da una classe 4.

Grafico 5 a/b/c: I parametri più critici per la qualità delle acque della stazione 07/GI sono risultati l’azoto ammoniacale, il fosforo totale e la carica batterica.

Lo stato chimico ricavato dai metalli e dalla ricerca di composti organici volatili (VOC) non evidenzia situazioni critiche. Tra le sostanze ritrovate si segnala comunque la presenza di alcuni composti organici volatili (Dicloropropano, Tricloroetilene, cloroformio, Tetracloroetilene, Tricloroetano e toluene); le concentrazioni rinvenute sono comunque tutte al di sotto dei valori soglia riportati in tabella 1/A dell’allegato 1 alla parte terza del D. Lgs. 152/2006.

Per quanto riguarda gli altri parametri chimici si registrano numerosi superamenti dei limiti di legge per la vita dei pesci, soprattutto a carico del fosforo, dell’azoto ammoniacale e dell’ammoniaca libera (NH3) che determinano la non idoneità alla vita dei pesci in tale punto di campionamento.
La stazione 5/SE è situata sul corso d’acqua Sentino, affluente che apporta al fiume Esino acque di buona qualità ambientale.

Nel complesso i dati evidenziano una qualità ambientale buona (SACA 2).

Si evidenzia una classe 2 sia per quanto riguardo i macrodescrittori del LIM che per l’IBE.

La buona qualità ambientale di tali acque è confermata anche dai risultati della ricerca di sostanze pericolose (che non rilevano nessun superamento dei limiti) e dall’analisi dei parametri chimici che stabiliscono la conformità delle acque alla vita dei pesci conferendo a tali acque l'idoneità alla vita dei pesci salmonidi.

In generale nel corso del 2006, e in particolare nel secondo semestre, il bacino del fiume Esino è stato oggetto di più segnalazioni di inquinamento, tra cui ricordiamo quelle che a più riprese da agosto a novembre hanno interessato il torrente Giano e il Rio Bono, suo affluente.

Tali eventi di inquinamento, insieme ad altri eventualmente non segnalati, potrebbero avere influenzato le caratteristiche chimiche e batteriologiche delle acque del fiume causando un peggioramento dell’indice LIM rispetto al risultato dell’anno precedente nella stazione di controllo 07/GI (Tabella 2).

I parametri più critici dell’indice LIM per le stazioni del bacino del fiume Esino sono la carica batterica, l’azoto ammoniacale e il fosforo totale.

La ricerca di sostanze pericolose non ha invece evidenziato situazioni particolari.

Le comunità di macroinvertebrati che popolano il corso d’acqua sono ben strutturate solo sul Torrente Sentino e sulla stazione più a monte del Torrente Giano. Nelle altre stazioni appaiono semplificate per gli effetti delle pressioni e per altre caratteristiche ambientali (fascia perifluviale, vegetazione acquatica, strutture di ritenzione, tipologia di substrato dell’alveo).

Fiume Misa

Il fiume Misa nasce dalle pendici sud-occidentali dell’anticlinale arceviese, nella zona di San Donnino, e dopo circa 45 km, percorrendo il territorio collinare dell’entroterra anconetano in direzione ovest-est, sfocia nel mare Adriatico all’altezza di Senigallia. Il fiume Misa ha un unico affluente, il fiume Nevola, a carattere prevalentemente torrentizio, con magre estive e piene invernali. Delle tre stazioni di campionamento due ricadono sull’asta principale, una sull’affluente Nevola.

La prima stazione di campionamento che si incontra lungo l’asta fluviale del fiume Misa è quella che si trova in località Osteria, poco a monte del depuratore comunale di Serra de’ Conti (4/MI). Il fiume fino a questo punto attraversa un territorio a vocazione agricola, attività che, insieme alle captazioni idriche e agli scarichi del comune di Arcevia, sembra avere un impatto diretto sul fiume che in questa stazione raggiunge una qualità ambientale tra il sufficiente e il buono (SACA 3/2).

Nel complesso le analisi chimico-batteriologiche confermano il livello 2 del LIM dello scorso anno (Tabella 2); il parametro più critico è risultato l’azoto nitrico (Grafico 7). Questo miglioramento si riflette anche sui parametri chimici che
stabiliscono l'idoneità alla vita dei pesci, classificando le acque di questa stazione idonee alla vita dei pesci ciprinidi.

L’analisi della comunità macrobentonica evidenzia un IBE di classe 3/2: la struttura è abbastanza diversificata, ma le unità sistematiche rinvenute sono limitate.

Lo stato chimico non influisce sulla classificazione; la ricerca di sostanze pericolose ha infatti rilevato la presenza trascurabile di alcuni metalli e di terbutilazina tra i fitofarmaci ricercati.

Grafico 7: Il parametro più critico per la qualità delle acque della stazione 04/MI è risultato l’azoto nitrico

Riguardo la stazione 7/MI, che è quella più vicina alla foce del fiume Misa, a monte della canalizzazione del tratto terminale, lo stato di qualità ambientale risulta sufficiente (SACA 3).

I parametri più critici che contribuiscono al risultato del LIM (di terzo livello) sono il fosforo e la carica batterica (Grafico 8 a/b). Anche per la comunità macrobentonica, pur ancora poco equilibrata e diversificata, si evidenzia un certo miglioramento (IBE di classe III).

Lo stato chimico relativo alla presenza di metalli e di VOC nelle acque è rappresentato da concentrazioni trascurabili di metalli (quelli più presenti sono Nichel, Rame e Cromo) e di alcuni VOC (tra cui cloroformio e tetracloretilene) ma nessuna supera i valori soglia riportati nel D. Lgs. 152/2006.

Le caratteristiche degli altri parametri chimici classificano tali acque idonee alla vita dei pesci ciprinidi.
Grafico 8 a/b: I parametri più critici per la qualità delle acque della stazione 07/MI sono risultati la carica batterica e il fosforo.

![Grafico 8 a/b: Carica batterica e Fosforo totale](image)

In tale punto di campionamento è stato effettuato nel mese di luglio anche un prelievo di sedimento per la ricerca di sostanze pericolose (metalli, IPA, pesticidi e PCB) ma non si registrano superamenti degni di nota.

Nella stazione 5/NE vengono monitorate le acque del fiume Nevola, affluente del fiume Misa. In tale punto le acque risultano di qualità ambientale sufficiente (SACA 3), ribadendo il risultato degli ultimi anni.

Le caratteristiche chimico-batteriologiche sono discrete (LIM di terzo livello) e la comunità macrobentonica poco diversificata (IBE di classe III).

Lo stato chimico non incide sulla classificazione finale in quanto le poche sostanze rinvenute rispettano i limiti previsti dal D. Lgs. 152/2006.

Altrettanto soddisfacente è la classificazione delle acque per l’idoneità alla vita dei pesci ciprinidi.

Grafico 9 a/b: I parametri più critici per la qualità delle acque della stazione 05/NE sono risultati la carica batterica e l’azoto ammoniacale.

![Grafico 9 a/b: Carica batterica e Azoto ammoniacale](image)
Nel complesso i dati del monitoraggio del 2006 sembrano registrare un lieve miglioramento generale della qualità delle acque del bacino del fiume Misa, particolarmente evidente nella stazione più a monte.

Fiume Musone

Il fiume Musone nasce a circa 775 m di quota dalla confluenza di due valloni, uno con origine tra il monte Lavacelli e il monte Marzolare, l’altro tra Prati di Gagliola e Campo della Bisaccia. Assume il nome di Musone dopo aver ricevuto le acque del piccolo fosso d’Ugliano. Nel tratto finale subisce la confluenza del F.Aspio e dopo circa 1 Km sfocia nel Mare Adriatico nei pressi di Porto Recanati. La superficie del bacino idrografico è pari a 642 Km2.

Delle tre stazioni di campionamento due ricadono sull’asta principale, una sull’affluente Aspio.

Più a valle si trova la stazione 10/MU situata nel territorio comunale di Osimo. Nel complesso il monitoraggio svolto durante il 2006 descrive uno stato di qualità ambientale sufficiente (SACA 3).

Gli effetti delle attività agricole che il fiume subisce nei territori a monte della stazione si traducono in un LIM di secondo livello e un IBE di classe 3. Il parametro più critico per il LIM è risultato il fosforo totale (Grafico 10).

Lo stato chimico non incide sulla classificazione finale, poche e in concentrazioni trascurabili sono le sostanze pericolose rinvenute (appartenenti soprattutto alla categoria dei pesticidi).

I parametri chimici responsabili dell’idoneità alla vita dei pesci non evidenziano valori particolarmente allarmanti; nel complesso le acque si classificano idonee alla vita dei pesci ciprinidi.

Grafico 10: Il parametro più critico per la qualità delle acque della stazione 10/MU è risultato il fosforo totale.

In tale punto di campionamento è stato effettuato nel mese di luglio anche un prelievo di sedimento per la ricerca di sostanze pericolose (metalli, IPA, pesticidi e PCB). Si registra un lieve superamento del valore soglia di contaminazione per IPA.
La qualità ambientale delle acque della foce del fiume Musone (14/MU) è risultata scadente (SACA 4).

L'impatto degli scarichi dell'impianto di depurazione di Castelfidardo, delle acque inquinate del Fosso Vallato, prima, e quelle del Fiume Aspio, dopo, si riflette sia sulle caratteristiche chimico-batteriologiche che nella comunità macrobentonica. I parametri che contribuiscono al raggiungimento del terzo livello di LIM sono il fosforo totale, la carica batterica e l’azoto ammoniacale (Grafico 11 a/b/c). L’analisi dell’IBE conferma la situazione compromessa con presenza di pochi taxa e tutti molto tolleranti all’inquinamento (IBE di classe IV). Nel risultato dell’IBE gioca un ruolo importante anche il tipo di substrato dell’alveo (in prevalenza limo) e la banalizzazione delle strutture dell’alveo (caratteristica pressoché costante negli ambienti di foce, ma nel bacino del fiume Musone aggravata dalla presenza della Diga di Castreccioni che trattiene il trasporto di materiale solido grossolano presente a monte).

Grafico 11 a/b/c: I parametri più critici per la qualità delle acque della stazione 14/MU sono risultati il fosforo, l’azoto ammoniacale e la carica batterica.

Lo stato chimico non influenza lo stato ambientale; sono però degni di nota presenze elevate di metalli (in particolare di Nickel che fa registrare una
concentrazione di 21 µg/l nel mese di novembre Grafico 12). In minor concentrazione sono stati rinvenuti alcuni VOC (cloroformio, tricloroetilene, tetracloroetilene e toluene).

Le analisi degli altri parametri chimici (in modo particolare quelle che si riferiscono all’ammoniaca non ionizzata) inoltre non garantiscono l’idoneità della vita dei pesci per questo punto di campionamento.

Grafico 12: I parametri più critici per la qualità delle acque della stazione 14/MU sono

Nel punto di campionamento posizionato sul fiume Aspio (6/AS) la qualità ambientale risulta scadente (SACA 4).

Si riconferma il peggiore punto di campionamento dal punto di vista qualitativo: sia il LIM che l’IBE hanno i punteggi più bassi rispetto agli altri punti di monitoraggio (Grafico 1). Il LIM risulta di quarto livello per effetto di elevate cariche batteriche e valori elevati di azoto ammoniacale e di fosforo (Grafico 13 a/b/c).

La comunità macrobentonica è ridotta a pochi taxa tolleranti (IBE di classe IV).

Lo stato chimico non incide sulla classificazione finale dello stato ambientale, anche se in tale punto di campionamento si registrano i livelli più alti di pesticidi (soprattutto di Terbutilazina con 0,16 µg/l e di Alachlor con 0,09 µg/l) e discrete concentrazioni di metalli pesanti (in particolare di Nichel).

Per quanto riguarda gli altri parametri chimici si registrano numerosi superamenti dei limiti di legge per la vita dei pesci, soprattutto a carico dell’azoto ammoniacale, dell’ammoniaca libera (NH3) e dell’azoto nitroso che determinano la non idoneità alla vita dei pesci in tale punto di campionamento.
In generale le stazioni monitorate nel bacino del fiume Musone sono quelle più compromesse. In particolare la zona della bassa valle e della pianura costiera del Musone subiscono l’impatto diretto delle industrie galvaniche e meccaniche che insistono nel territorio circostante, insieme all’impatto degli scarichi dei centri urbani di Osimo, Castelfidardo e Loreto. Inoltre la geomorfologia dei sedimenti di questo tratto terminale del fiume Musone (spessi depositi di argilla e limo), insieme alla carenza di strutture di ritenzione nell’alveo, non favoriscono lo sviluppo di una strutturata comunità di macroinvertebrati, già messa a dura prova dalla scadente qualità chimica delle acque.

Grafico 13 a/b/c: I parametri più critici per la qualità delle acque della stazione 06/AS sono risultati il fosforo, l’azoto ammoniacale e la carica batterica.
Monitoraggio eseguito dal Dipartimento di Macerata

Il Potenza ed il Chienti sono i principali corsi d’acqua superficiale della Provincia di Macerata e si estendono, attraverso tale provincia, da zone montane caratterizzate da bassa densità abitativa, alle pianure alluvionali contraddistinte invece da una elevata concentrazione sia di popolazione residente che di attività produttive, comprese quelle agricole qui condotte tra l’altro con criteri più drastici che non in zona montana.

Il fiume Potenza attraversa la provincia di Macerata e si estende dal Comune di Fiuminata al Comune di Porto Recanati; possiede un bacino di 775 Kmq e la popolazione residente ammonta a 97.000 abitanti circa con una densità di popolazione pari a 125 ab/Kmq.

Dal punto di vista quantitativo lungo il decorso del fiume non sono presenti sbarramenti o invasi artificiali che ne alterano profondamente il regime idalogico, mentre si contano diverse derivazioni che utilizzano le acque in modo diretto per fini idroelettrici restituendole di solito pochi chilometri più a valle.

Dal punto di vista qualitativo possiamo affermare che, sebbene con alcune oscillazioni temporali a volte legate alla variabilità intrinseca delle stesse metodologie d’indagine, la qualità delle acque del sistema idrografico del Potenza è buona con un lieve declassamento nel tratto terminale che comunque mantiene caratteristiche ecologiche tali da permettere ampiamente il sostentamento delle specie ciprinicole.

Il bacino del fiume Chienti è compreso per la maggior parte nella Provincia di Macerata ed il suo corso è interrotto da quattro laghi artificiali.

Un quinto invaso è stato realizzato sull’affluente Fiastrone.

Questi invasi artificiali, costruiti in varie epoche per fini idroelettrici, influenzano enormemente il regime idraulico del fiume, anche con cadenza giornaliera, rendendo più critica l’omeostasi dell’ecosistema fluviale.

Il fiume Chienti possiede un bacino di 1297 Kmq e la popolazione residente ammonta a 166.000 abitanti circa con una densità di popolazione pari a 128 ab/Kmq.

Qualitativamente possiamo considerare il fiume Chienti mediamente in discrete condizioni di qualità fino a Tolentino, mentre già più a valle cominciano ad evidenziarsi, e man mano che si scende ad aggravarsi, segni ed alterazioni tipiche dei tratti fluviali più distali, interessati da un inquinamento proveniente prevalentemente da attività produttive ed agricole.

Qui si evidenzia con una certa costanza una inversione dei valori assunti dagli indici LIM ed IBE nel senso che è quest’ultimo a condizionare l’assegnazione dello stato ecologico del corso d’acqua.

Nello specifico, soffermandoci ora sui principali indici di stato utilizzati per costruire la classificazione di entrambi i corsi d’acqua, possiamo notare come LIM e IBE assumano valori contrapposti nel senso che il primo tende a condizionare negativamente l’assegnazione di una classe di qualità più elevata nelle zone montane caratterizzate da un basso impatto antropico di natura industriale, mentre il
secondo esercita lo stesso tipo di effetto limitante nelle porzioni potamali dei corsi d’acqua risentendo più dei carichi tossici originati dai processi produttivi che sono più rappresentati in queste porzioni fluviali.

Il comportamento del LIM in particolare, fa sì che molte stazioni “alte” di questi corsi d’acqua non ottengano il punteggio massimo a causa di concentrazioni, più elevate delle attese, di alcuni indicatori di stato (soprattutto nitrato, ed E.coli).

L’origine del fenomeno potrebbe verosimilmente essere collegata con la presenza di carichi di origine agricola e/o zootecnica, e per il Chienti anche da una discreta quota di abitanti residenti non ancora serviti da sistemi di depurazione.

Asta fluviale: Chienti

Corso d’acqua: Chienti

Stazione 7CH : Caldarola - località Bistocco

Stato Ecologico

In tale stazione i campionamenti hanno fatto rilevare uno stato ecologico pari a 2 caratterizzato da un LIM di 2 ed IBE di 11(classe 1).

Come spesso succede nelle zone caratterizzate da un impatto antropico relativamente basso, è il LIM che si configura come risultato peggiore nella assegnazione dello stato ecologico.

I risultati sono comunque sovrapponibili a quelli relativi all’anno 2005.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/CH</td>
<td>16/01/06</td>
<td>8,20</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>8,50</td>
<td>ILD</td>
<td>1.260</td>
</tr>
<tr>
<td>7/CH</td>
<td>14/02/06</td>
<td>10,70</td>
<td>1,00</td>
<td>4,00</td>
<td>0,06</td>
<td>7,60</td>
<td>ILD</td>
<td>700</td>
</tr>
<tr>
<td>7/CH</td>
<td>22/03/06</td>
<td>8,80</td>
<td>1,00</td>
<td>3,00</td>
<td>ILD</td>
<td>7,50</td>
<td>ILD</td>
<td>3.850</td>
</tr>
<tr>
<td>7/CH</td>
<td>26/04/06</td>
<td>9,70</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>6,60</td>
<td>ILD</td>
<td>200</td>
</tr>
<tr>
<td>7/CH</td>
<td>08/05/06</td>
<td>10,80</td>
<td>2,00</td>
<td>7,00</td>
<td>0,20</td>
<td>5,90</td>
<td>ILD</td>
<td>1.090</td>
</tr>
<tr>
<td>7/CH</td>
<td>13/06/06</td>
<td>9,60</td>
<td>2,50</td>
<td>6,00</td>
<td>ILD</td>
<td>6,00</td>
<td>ILD</td>
<td>250</td>
</tr>
<tr>
<td>7/CH</td>
<td>04/07/06</td>
<td>9,50</td>
<td>ILD</td>
<td>ILD</td>
<td>0,08</td>
<td>5,90</td>
<td>ILD</td>
<td>360</td>
</tr>
<tr>
<td>7/CH</td>
<td>24/08/06</td>
<td>8,00</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>4,20</td>
<td>ILD</td>
<td>280</td>
</tr>
<tr>
<td>7/CH</td>
<td>13/09/06</td>
<td>9,30</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>4,10</td>
<td>ILD</td>
<td>400</td>
</tr>
<tr>
<td>7/CH</td>
<td>17/10/06</td>
<td>8,90</td>
<td>2,00</td>
<td>6,00</td>
<td>0,08</td>
<td>4,10</td>
<td>ILD</td>
<td>1.170</td>
</tr>
<tr>
<td>7/CH</td>
<td>06/11/06</td>
<td>11,80</td>
<td>1,10</td>
<td>4,00</td>
<td>0,09</td>
<td>4,00</td>
<td>ILD</td>
<td>170</td>
</tr>
<tr>
<td>7/CH</td>
<td>06/12/06</td>
<td>10,80</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>4,10</td>
<td>0,65</td>
<td>210</td>
</tr>
</tbody>
</table>
Stato Chimico

Voc e pesticidi sempre inferiori o prossimi al limite di determinazione in tutte le campagne di campionamento.

Metalli ed IPA sempre prossimi al limite di rilevabilità.

Per il SACA si conferma il valore pari a due ottenuto dal SECA.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate nella tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Questa stazione ha recuperato le caratteristiche necessarie al sostentamento delle specie salmonicole dopo la isolata flessione dell’anno scorso. Solo il parametro ossigeno dischiolto è stato per quattro volte sotto a 9 mg/l.

La temperatura non è stata superiore ai previsti 10°C nel periodo riproduttivo.

Stazione 9CH : Belforte del Chienti - località Moricuccia

Stato Ecologico

In questa stazione i risultati ottenuti dalla valutazione dei parametri chimico-fisici sono compatibili con un livello di inquinamento pari a 2 così come pure l’IBE, essendo mediamente pari a 10/11, recupera rispetto allo scorso anno e si pone ad un livello 1 recuperando, dopo due anni, di nuovo la prima classe che lo aveva caratterizzato in passato.

Contribuiscono al mancato raggiungimento di un punteggio LIM più elevato soprattutto i parametri: E. coli e nitrato.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/CH</td>
<td>16/01/06</td>
<td>8,30</td>
<td>ILD</td>
<td>ILD</td>
<td>6,70</td>
<td>ILD</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>14/02/06</td>
<td>10,70</td>
<td>1,00</td>
<td>4,00</td>
<td>0,06</td>
<td>5,60</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>22/03/06</td>
<td>9,30</td>
<td>1,00</td>
<td>3,00</td>
<td>ILD</td>
<td>6,30</td>
<td>ILD</td>
<td>2950</td>
</tr>
<tr>
<td>9/CH</td>
<td>26/04/06</td>
<td>9,40</td>
<td>ILD</td>
<td>ILD</td>
<td>7,10</td>
<td>ILD</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>08/05/06</td>
<td>10,70</td>
<td>1,20</td>
<td>5,00</td>
<td>0,11</td>
<td>4,40</td>
<td>ILD</td>
<td>1500</td>
</tr>
<tr>
<td>9/CH</td>
<td>13/06/06</td>
<td>9,80</td>
<td>2,10</td>
<td>5,00</td>
<td>ILD</td>
<td>11,10</td>
<td>ILD</td>
<td>1200</td>
</tr>
<tr>
<td>9/CH</td>
<td>04/07/06</td>
<td>8,20</td>
<td>ILD</td>
<td>ILD</td>
<td>10,90</td>
<td>ILD</td>
<td>1100</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>24/08/06</td>
<td>8,50</td>
<td>ILD</td>
<td>ILD</td>
<td>3,80</td>
<td>ILD</td>
<td>1900</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>13/09/06</td>
<td>7,90</td>
<td>1,20</td>
<td>5,00</td>
<td>0,13</td>
<td>3,40</td>
<td>ILD</td>
<td>11800</td>
</tr>
<tr>
<td>9/CH</td>
<td>17/10/06</td>
<td>8,50</td>
<td>2,10</td>
<td>6,00</td>
<td>0,07</td>
<td>3,30</td>
<td>ILD</td>
<td>250</td>
</tr>
<tr>
<td>9/CH</td>
<td>06/11/06</td>
<td>11,60</td>
<td>ILD</td>
<td>ILD</td>
<td>18,90</td>
<td>ILD</td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>9/CH</td>
<td>06/12/06</td>
<td>10,60</td>
<td>1,80</td>
<td>6,00</td>
<td>ILD</td>
<td>3,20</td>
<td>0,63</td>
<td>1800</td>
</tr>
</tbody>
</table>
Stato Chimico
VOC inferiori al limite di determinazione in tutte le campagne di campionamento.
Metalli sempre a bassissime concentrazioni. IPA assenti.
Per il SACA si conferma il valore pari a 2 ottenuto dal SECA
Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci
Anche in questo caso è stata superata la defaillance dello scorso anno con recupero della idoneità al sostentamento delle specie salmonicole.
Comunque ci sono stato 5 superamenti su 12 relativamente all’ossigeno dischiolto.
Tutti gli altri parametri sono in linea con i valori tabellari previsti per le specie salmonicole.

Stazione 13CH: Corridonia - località S.Claudio

Stato Ecologico
In questa stazione i dati dimostrano innanzitutto discordanza tra i valori assunti dal LIM, che si posiziona ad un livello pari a 2 analogamente a quanto riscontrato nel 2005, e dall'IBE che invece mostra valori costantemente compatibili con un livello 3 dal 1999 a tutt'oggi.
Per quanto riguarda il LIM i parametri più critici sono lo ione nitrato ed il COD.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>13/CH</td>
<td>16/01/06</td>
<td>8,50</td>
<td>ILD</td>
<td>ILD</td>
<td>9,80</td>
<td>ILD</td>
<td>4.800</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>14/02/06</td>
<td>10,20</td>
<td>2,00</td>
<td>7,00</td>
<td>16,80</td>
<td>ILD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>22/03/06</td>
<td>8,60</td>
<td>1,00</td>
<td>3,00</td>
<td>10,00</td>
<td>ILD</td>
<td>5.450</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>26/04/06</td>
<td>9,00</td>
<td>ILD</td>
<td>ILD</td>
<td>9,80</td>
<td>ILD</td>
<td>3.300</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>08/05/06</td>
<td>9,00</td>
<td>2,20</td>
<td>8,00</td>
<td>6,50</td>
<td>ILD</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>13/06/06</td>
<td>7,60</td>
<td>1,90</td>
<td>5,00</td>
<td>10,20</td>
<td>ILD</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>04/07/06</td>
<td>7,20</td>
<td>ILD</td>
<td>ILD</td>
<td>9,80</td>
<td>ILD</td>
<td>9.500</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>24/08/06</td>
<td>10,40</td>
<td>3,00</td>
<td>10,00</td>
<td>5,90</td>
<td>ILD</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>13/09/06</td>
<td>9,60</td>
<td>1,20</td>
<td>4,00</td>
<td>0,18</td>
<td>3,50</td>
<td>0,27</td>
<td>2.800</td>
</tr>
<tr>
<td>13/CH</td>
<td>17/10/06</td>
<td>9,10</td>
<td>1,10</td>
<td>ILD</td>
<td>5,60</td>
<td>ILD</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>13/CH</td>
<td>06/11/06</td>
<td>11,60</td>
<td>3,10</td>
<td>12,00</td>
<td>0,23</td>
<td>11,00</td>
<td>ILD</td>
<td>400</td>
</tr>
<tr>
<td>13/CH</td>
<td>06/12/06</td>
<td>10,90</td>
<td>1,10</td>
<td>4,00</td>
<td>8,80</td>
<td>0,68</td>
<td>260</td>
<td></td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori al limite di determinazione in tutte le campagne di campionamento.

Pesticidi e metalli sempre a bassissime concentrazioni; IPA assenti.
Per il SACA si conferma il valore pari a 3 ottenuto dal SECA.
Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Sono confermati i dati dell’anno scorso con la classificazione di tali acque come ciprinicole

Anche in questo caso però sono stati riscontrati dei miglioramenti rispetto allo scorso anno.

Solo la temperatura ha pesato sulla classificazione essendosi avuti quattro superamenti del valore imperativo per i salmonidi di cui uno nel periodo riproduttivo.

Stazione 14CH: Montegranaro – Parco fluviale

Stato Ecologico

La valutazione dei dati dimostra come anche in questo caso, analogamente a quanto verificatosi nella precedente stazione, siano peggiori i risultati forniti dall’IBE (livello 3) rispetto a quelli relativi ai macrodescrittori (livello 2) consolidando così una situazione che si mantiene dal 2001.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>14/CH</td>
<td>16/01/06</td>
<td>8,10</td>
<td>ILD</td>
<td>ILD</td>
<td>0,26</td>
<td>14,50</td>
<td>ILD</td>
<td>5,760</td>
</tr>
<tr>
<td>14/CH</td>
<td>14/02/06</td>
<td>9,30</td>
<td>1,40</td>
<td>5,00</td>
<td>0,24</td>
<td>17,00</td>
<td>ILD</td>
<td>100</td>
</tr>
<tr>
<td>14/CH</td>
<td>22/03/06</td>
<td>8,60</td>
<td>1,20</td>
<td>5,00</td>
<td>ILD</td>
<td>12,60</td>
<td>ILD</td>
<td>6,900</td>
</tr>
<tr>
<td>14/CH</td>
<td>26/04/06</td>
<td>8,30</td>
<td>1,30</td>
<td>4,00</td>
<td>ILD</td>
<td>15,90</td>
<td>ILD</td>
<td>1,700</td>
</tr>
<tr>
<td>14/CH</td>
<td>08/05/06</td>
<td>9,30</td>
<td>2,50</td>
<td>10,00</td>
<td>0,22</td>
<td>9,30</td>
<td>ILD</td>
<td>2,800</td>
</tr>
<tr>
<td>14/CH</td>
<td>13/06/06</td>
<td>8,10</td>
<td>2,30</td>
<td>6,00</td>
<td>0,11</td>
<td>13,10</td>
<td>ILD</td>
<td>400</td>
</tr>
<tr>
<td>14/CH</td>
<td>04/07/06</td>
<td>7,00</td>
<td>2,00</td>
<td>2,00</td>
<td>ILD</td>
<td>12,30</td>
<td>ILD</td>
<td>280</td>
</tr>
<tr>
<td>14/CH</td>
<td>24/08/06</td>
<td>10,10</td>
<td>1,90</td>
<td>6,00</td>
<td>ILD</td>
<td>10,00</td>
<td>ILD</td>
<td>500</td>
</tr>
<tr>
<td>14/CH</td>
<td>13/09/06</td>
<td>8,90</td>
<td>1,30</td>
<td>5,00</td>
<td>0,32</td>
<td>7,60</td>
<td>ILD</td>
<td>1,600</td>
</tr>
<tr>
<td>14/CH</td>
<td>17/10/06</td>
<td>8,90</td>
<td>4,00</td>
<td>12,00</td>
<td>0,33</td>
<td>14,60</td>
<td>ILD</td>
<td>700</td>
</tr>
<tr>
<td>14/CH</td>
<td>06/11/06</td>
<td>10,10</td>
<td>1,80</td>
<td>7,00</td>
<td>0,42</td>
<td>20,00</td>
<td>ILD</td>
<td>1,400</td>
</tr>
<tr>
<td>14/CH</td>
<td>06/12/06</td>
<td>14,30</td>
<td>1,00</td>
<td>4,00</td>
<td>ILD</td>
<td>19,20</td>
<td>0,70</td>
<td>370</td>
</tr>
</tbody>
</table>
Stato Chimico

Voc sempre inferiori al limite di determinazione in tutte le campagne di campionamento.

Pesticidi e metalli sempre a bassissime concentrazioni; IPA assenti.

Per il SACA si conferma il valore pari a 3 ottenuto dal SECA.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I dati di non idoneità riscontrati lo scorso anno sono anche in questa stazione migliorati determinando una assegnazione di compatibilità con il sostentamento delle specie cipriniche anche se con diversi superamenti dei parametri ossigeno disciolto e temperatura; tale parametro è stato elevato anche nel periodo riproduttivo.

Rientrati i benché isolati rilevamenti a carico di nichel e rame verificatisi lo scorso anno.

Si tratta comunque sempre di una stazione con delle criticità per quanto riguarda le condizioni generali di idoneità alla vita dei pesci.

Stazione 16CH: Civitanova marche – foce

Stato Ecologico

I dati di qualità di tale stazione, evidenziano un valore di IBE in linea con quello dell’anno precedente (livello 3), mentre il LIM ha ottenuto un livello pari a 2 ma borderline con il livello 3.

Ancora bassi i punteggi forniti dai parametri azoto ammoniacale ed E.Coli.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/CH</td>
<td>16/01/06</td>
<td>8,00</td>
<td>ILD</td>
<td>ILD</td>
<td>0,22</td>
<td>14,90</td>
<td>ILD</td>
<td>6.400</td>
</tr>
<tr>
<td>16/CH</td>
<td>14/02/06</td>
<td>10,10</td>
<td>1,40</td>
<td>6,00</td>
<td>0,69</td>
<td>21,80</td>
<td>ILD</td>
<td>600</td>
</tr>
<tr>
<td>16/CH</td>
<td>22/03/06</td>
<td>8,80</td>
<td>1,80</td>
<td>7,00</td>
<td>ILD</td>
<td>15,80</td>
<td>ILD</td>
<td>9.900</td>
</tr>
<tr>
<td>16/CH</td>
<td>26/04/06</td>
<td>9,30</td>
<td>2,10</td>
<td>8,00</td>
<td>ILD</td>
<td>15,90</td>
<td>ILD</td>
<td>1.700</td>
</tr>
<tr>
<td>16/CH</td>
<td>08/05/06</td>
<td>9,80</td>
<td>3,40</td>
<td>12,00</td>
<td>0,39</td>
<td>17,90</td>
<td>ILD</td>
<td>4.600</td>
</tr>
<tr>
<td>16/CH</td>
<td>13/06/06</td>
<td>8,40</td>
<td>2,30</td>
<td>6,00</td>
<td>0,09</td>
<td>12,30</td>
<td>ILD</td>
<td>700</td>
</tr>
<tr>
<td>16/CH</td>
<td>04/07/06</td>
<td>8,30</td>
<td>2,20</td>
<td>7,00</td>
<td>ILD</td>
<td>11,70</td>
<td>ILD</td>
<td>1.400</td>
</tr>
<tr>
<td>16/CH</td>
<td>24/08/06</td>
<td>9,30</td>
<td>5,60</td>
<td>16,00</td>
<td>1,26</td>
<td>16,10</td>
<td>ILD</td>
<td>49.000</td>
</tr>
<tr>
<td>16/CH</td>
<td>13/09/06</td>
<td>8,80</td>
<td>1,30</td>
<td>6,00</td>
<td>ILD</td>
<td>12,30</td>
<td>ILD</td>
<td>5.200</td>
</tr>
<tr>
<td>16/CH</td>
<td>17/10/06</td>
<td>8,30</td>
<td>2,80</td>
<td>8,00</td>
<td>0,50</td>
<td>17,40</td>
<td>0,04</td>
<td>3.600</td>
</tr>
<tr>
<td>16/CH</td>
<td>06/11/06</td>
<td>10,20</td>
<td>2,60</td>
<td>9,00</td>
<td>0,88</td>
<td>23,60</td>
<td>0,05</td>
<td>400</td>
</tr>
<tr>
<td>16/CH</td>
<td>06/12/06</td>
<td>13,40</td>
<td>2,10</td>
<td>8,00</td>
<td>ILD</td>
<td>22,40</td>
<td>0,19</td>
<td>330</td>
</tr>
</tbody>
</table>
Stato Chimico

Voc sempre inferiori al limite di determinazione in entrambe le campagne di campionamento;
Pesticidi e metalli sempre prossimi al limite di rilevabilità; IPA sempre assenti.

Per il SACA si conferma il valore pari a 3 ottenuto dal SECA.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

La foce del Chienti conferma rispetto allo scorso anno l’idoneità per le specie ciprinicole.

Sempre ricordando che siamo di fronte ad una foce, tra i dati peggiori rilevati spicca il superamento per il 50% dei campioni dell’ossigeno disciolto e della temperatura anche nel periodo riproduttivo

Un superamento isolato anche per i parametri BOD e ammonio.

Anche in questo caso si tratta di una stazione con delle criticità per quanto riguarda le condizioni generali di idoneità alla vita dei pesci.

ASTA FLUVIALE: CHIENTI
Corso d’acqua: Fiastrone
Stazione 20CH : Località Villacase

Stato Ecologico

In tale stazione i campionamenti hanno fatto rilevare uno stato ecologico pari a 2 caratterizzato da un LIM di pari livello ed IBE di 11 (livello 1) confermando la situazione simile a quella riscontrata nel 2005.

Come spesso succede nelle zone caratterizzate da un impatto antropico relativamente basso, è il LIM che si configura come risultato peggiore nella assegnazione dello stato ecologico.

I parametri che hanno ottenuto i risultati peggiori sono E.coli azoto nitrico ed ammoniacale

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>20/CH</td>
<td>16/01/06</td>
<td>8,40</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>6,90</td>
<td>ILD</td>
<td>1.520</td>
</tr>
<tr>
<td>20/CH</td>
<td>14/02/06</td>
<td>10,00</td>
<td>1,00</td>
<td>4,00</td>
<td>0,08</td>
<td>5,50</td>
<td>ILD</td>
<td>490</td>
</tr>
<tr>
<td>20/CH</td>
<td>22/03/06</td>
<td>8,60</td>
<td>1,30</td>
<td>5,00</td>
<td>ILD</td>
<td>36,60</td>
<td>ILD</td>
<td>6,150</td>
</tr>
<tr>
<td>20/CH</td>
<td>26/04/06</td>
<td>9,20</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>5,80</td>
<td>ILD</td>
<td>700</td>
</tr>
<tr>
<td>20/CH</td>
<td>08/05/06</td>
<td>10,70</td>
<td>1,00</td>
<td>3,00</td>
<td>ILD</td>
<td>6,70</td>
<td>ILD</td>
<td>620</td>
</tr>
<tr>
<td>20/CH</td>
<td>13/06/06</td>
<td>10,10</td>
<td>ILD</td>
<td>ILD</td>
<td>0,14</td>
<td>3,00</td>
<td>ILD</td>
<td>280</td>
</tr>
<tr>
<td>20/CH</td>
<td>04/07/06</td>
<td>9,30</td>
<td>ILD</td>
<td>ILD</td>
<td>0,07</td>
<td>2,50</td>
<td>ILD</td>
<td>260</td>
</tr>
<tr>
<td>20/CH</td>
<td>24/08/06</td>
<td>8,70</td>
<td>2,20</td>
<td>9,00</td>
<td>ILD</td>
<td>4,00</td>
<td>ILD</td>
<td>780</td>
</tr>
<tr>
<td>20/CH</td>
<td>13/09/06</td>
<td>9,90</td>
<td>1,30</td>
<td>6,00</td>
<td>0,11</td>
<td>2,00</td>
<td>0,29</td>
<td>320</td>
</tr>
<tr>
<td>20/CH</td>
<td>17/10/06</td>
<td>9,10</td>
<td>0,90</td>
<td>ILD</td>
<td>0,09</td>
<td>3,40</td>
<td>0,07</td>
<td>600</td>
</tr>
<tr>
<td>20/CH</td>
<td>06/11/06</td>
<td>10,70</td>
<td>1,10</td>
<td>3,00</td>
<td>0,09</td>
<td>2,10</td>
<td>0,06</td>
<td>670</td>
</tr>
<tr>
<td>20/CH</td>
<td>06/12/06</td>
<td>11,40</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>4,30</td>
<td>0,59</td>
<td>390</td>
</tr>
</tbody>
</table>
Stato Chimico

VOC sempre al limite di determinazione.
Metalli sempre a bassissime concentrazioni; IPA assenti.
Per il SACA si conferma il valore pari a 2 ottenuto dal SECA.
Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Recupero di questa stazione della idoneità al sostentamento delle specie salmonicole.
Discreta ripresa dei parametri ossigeno dischiolto e temperatura rispetto alle anomalie verificatesi lo scorso anno, che hanno manifestato pochissime non conformità.

ASTA FLUVIALE: CHIENTI

Corso d’acqua: Fiastra

Stazione 25CH : Località Abbadia di Fiastra

Stato Ecologico

In tale stazione i campionamenti relativi al 2006 hanno fatto rilevare uno stato ecologico pari a 3 caratterizzato in particolare da un LIM in classe 2 e un IBE di 7 (classe 3).

Rispetto al 2005 la situazione è grosso modo stazionaria.

Come al solito, molto al di sotto del punteggio medio dagli altri macrodescrittori, è risultato il parametro azoto nitrico.

In particolare è da notare che quest’ultimo parametro anche in questo periodo di osservazione si è mantenuto sempre su livelli di concentrazione superiore a 30 mg/l, con punte di oltre 40 mg/l. Questi valori di nitrato sono compatibili con un livello di inquinamento pari a 5.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>25/CH</td>
<td>16/01/06</td>
<td>8,00</td>
<td>ILD</td>
<td>ILD</td>
<td>0,29</td>
<td>38,80</td>
<td>ILD</td>
<td>5.600</td>
</tr>
<tr>
<td>25/CH</td>
<td>14/02/06</td>
<td>13,50</td>
<td>2,10</td>
<td>9,00</td>
<td>ILD</td>
<td>40,90</td>
<td>ILD</td>
<td>220</td>
</tr>
<tr>
<td>25/CH</td>
<td>22/03/06</td>
<td>8,50</td>
<td>1,80</td>
<td>6,00</td>
<td>ILD</td>
<td>28,30</td>
<td>ILD</td>
<td>9.000</td>
</tr>
<tr>
<td>25/CH</td>
<td>26/04/06</td>
<td>12,80</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>36,10</td>
<td>ILD</td>
<td>4.100</td>
</tr>
<tr>
<td>25/CH</td>
<td>08/05/06</td>
<td>10,40</td>
<td>1,40</td>
<td>8,00</td>
<td>ILD</td>
<td>31,30</td>
<td>ILD</td>
<td>6.800</td>
</tr>
<tr>
<td>25/CH</td>
<td>13/06/06</td>
<td>9,40</td>
<td>4,00</td>
<td>9,00</td>
<td>0,19</td>
<td>42,20</td>
<td>ILD</td>
<td>11.500</td>
</tr>
<tr>
<td>25/CH</td>
<td>04/07/06</td>
<td>9,00</td>
<td>1,60</td>
<td>8,00</td>
<td>ILD</td>
<td>41,70</td>
<td>ILD</td>
<td>330</td>
</tr>
<tr>
<td>25/CH</td>
<td>24/08/06</td>
<td>8,90</td>
<td>3,00</td>
<td>9,00</td>
<td>ILD</td>
<td>25,50</td>
<td>ILD</td>
<td>2.100</td>
</tr>
<tr>
<td>25/CH</td>
<td>13/09/06</td>
<td>10,40</td>
<td>1,20</td>
<td>4,00</td>
<td>ILD</td>
<td>33,40</td>
<td>ILD</td>
<td>460</td>
</tr>
<tr>
<td>25/CH</td>
<td>17/10/06</td>
<td>9,00</td>
<td>2,60</td>
<td>7,00</td>
<td>ILD</td>
<td>34,00</td>
<td>ILD</td>
<td>1.850</td>
</tr>
<tr>
<td>25/CH</td>
<td>06/11/06</td>
<td>10,60</td>
<td>2,00</td>
<td>7,00</td>
<td>0,37</td>
<td>37,10</td>
<td>ILD</td>
<td>1.030</td>
</tr>
<tr>
<td>25/CH</td>
<td>06/12/06</td>
<td>11,80</td>
<td>2,10</td>
<td>7,00</td>
<td>ILD</td>
<td>40,90</td>
<td>ILD</td>
<td>570</td>
</tr>
</tbody>
</table>
Stato Chimico
VOC prossimi al limite di determinazione in tutte le campagne.
Pesticidi e metalli in concentrazioni al limite della metodica. IPA assenti.
Per il SACA si conferma il valore pari a 3 ottenuto dal SECA.
Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci
Nel corso dei controlli effettuati nel 2006 questa stazione ha recuperato molto relativamente al parametro temperatura, anche nel periodo riproduttivo, che lo scorso anno aveva contribuito in maniera sostanziale a decretarle l’assegnazione di “ciprinicola”.
I risultati analitici permettono quindi di classificare queste acque come salmonicola.
Le non conformità, quasi assenti, hanno riguardato rare volte l’ossigeno disciolto.

Asta fluviale: Potenza
Corso d’acqua: Potenza
Stazione 3 PO : Gagliole – Località Selvalagli
Stato Ecologico
In tale stazione i campionamenti hanno fatto rilevare uno stato ecologico pari a 2 caratterizzato da un LIM pari a 2 ed IBE di 1 analogamente a quanto verificatosi nel 2005.
Anche qui, al pari di altre zone caratterizzate da un impatto antropico relativamente basso, il punteggio del LIM condiziona l’assegnazione del giudizio relativo allo stato ecologico con punteggi relativi a E. coli, azoto nitrico e ammoniacale bassi per una stazione montana..
I dati pregressi in nostro possesso, con l’esclusione dell’anno 2002 in cui non è stato eseguito il monitoraggio relativo all’all.1, mostrano risultati tutto sommato in linea con gli attuali, a partire dal 1999.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/PO</td>
<td>13/01/06</td>
<td>8,70</td>
<td>ILD</td>
<td>ILD</td>
<td>0,11</td>
<td>6,00</td>
<td>ILD</td>
<td>3,900</td>
</tr>
<tr>
<td>3/PO</td>
<td>07/02/06</td>
<td>7,20</td>
<td>ILD</td>
<td>ILD</td>
<td>0,40</td>
<td>4,40</td>
<td>ILD</td>
<td>600</td>
</tr>
<tr>
<td>3/PO</td>
<td>20/03/06</td>
<td>10,90</td>
<td>2,20</td>
<td>4,00</td>
<td>0,18</td>
<td>6,10</td>
<td>ILD</td>
<td>840</td>
</tr>
<tr>
<td>3/PO</td>
<td>11/04/06</td>
<td>9,40</td>
<td>ILD</td>
<td>ILD</td>
<td>0,13</td>
<td>3,80</td>
<td>ILD</td>
<td>2,800</td>
</tr>
<tr>
<td>3/PO</td>
<td>04/05/06</td>
<td>10,30</td>
<td>ILD</td>
<td>ILD</td>
<td>0,32</td>
<td>4,30</td>
<td>ILD</td>
<td>3,600</td>
</tr>
<tr>
<td>3/PO</td>
<td>06/06/06</td>
<td>9,70</td>
<td>ILD</td>
<td>ILD</td>
<td>0,30</td>
<td>4,10</td>
<td>ILD</td>
<td>20,000</td>
</tr>
<tr>
<td>3/PO</td>
<td>04/07/06</td>
<td>8,80</td>
<td>1,20</td>
<td>4,00</td>
<td>0,15</td>
<td>7,70</td>
<td>ILD</td>
<td>6,100</td>
</tr>
<tr>
<td>3/PO</td>
<td>01/08/06</td>
<td>9,50</td>
<td>ILD</td>
<td>ILD</td>
<td>0,11</td>
<td>3,60</td>
<td>ILD</td>
<td>27,000</td>
</tr>
<tr>
<td>3/PO</td>
<td>12/09/06</td>
<td>9,60</td>
<td>1,30</td>
<td>5,00</td>
<td>0,12</td>
<td>4,60</td>
<td>ILD</td>
<td>4,800</td>
</tr>
<tr>
<td>Data</td>
<td>ILD</td>
<td>ILD</td>
<td>OCO</td>
<td>OCO</td>
<td>ILD</td>
<td>ILD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/PO</td>
<td>11/10/06</td>
<td>7,40</td>
<td>ILD</td>
<td>0,08</td>
<td>3,30</td>
<td>ILD</td>
<td>3,700</td>
<td></td>
</tr>
<tr>
<td>3/PO</td>
<td>09/11/06</td>
<td>10,20</td>
<td>1,00</td>
<td>5,00</td>
<td>0,43</td>
<td>4,20</td>
<td>ILD</td>
<td>29,000</td>
</tr>
<tr>
<td>3/PO</td>
<td>05/12/06</td>
<td>10,70</td>
<td>ILD</td>
<td>0,34</td>
<td>4,50</td>
<td>0,74</td>
<td>30,000</td>
<td></td>
</tr>
</tbody>
</table>

STAZIONE 3/PO

- **andamento annuale dell’O2 discinato**
- **andamento annuale del BOD**
- **andamento annuale del COD**
- **andamento annuale dell’azoto ammoniacale**
- **andamento annuale dell’azoto nitritico**
- **andamento annuale del fosforo totale**
- **andamento annuale di Escherichia Coli**
Stato Chimico

VOC inferiori o prossimi al limite di determinazione in tutte le campagne.

Antiparassitari anch’essi tutti inferiori al limite di determinazione; IPA assenti.

Per il SACA si conferma il valore pari a 2 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I risultati analitici hanno fatto registrare dati di qualità adatti al sostentamento delle specie salmonicole in accordo con gli ultimi dati pregressi in nostro possesso (1999 - 2004).

Si sono verificati superamenti dei limiti per i salmonicoli per il parametro ossigeno disciolto in quattro campioni su dodici.

Stazione 5 PO : s. prov. S.Severino – Tolentino

Stato Ecologico

Viene confermato il miglioramento del dato del 2005 relativo all’IBE che è ad una prima classe netta, mentre resta a 2 il valore del LIM determinando quindi l’assegnazione a tale stazione di un SECA pari a 2.

Per quanto concerne i singoli macrodescrittori, quelli che maggiormente condizionano il comportamento del punteggio LIM sono: azoto nitrico ammoniacale ed E.coli.

<table>
<thead>
<tr>
<th>STAZIONE E</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/PO 13/01/06</td>
<td>8,10</td>
<td>ILD</td>
<td>ILD</td>
<td>0,13</td>
<td>7,40</td>
<td>ILD</td>
<td>1,400</td>
<td></td>
</tr>
<tr>
<td>5/PO 07/02/06</td>
<td>7,80</td>
<td>ILD</td>
<td>ILD</td>
<td>0,40</td>
<td>6,20</td>
<td>ILD</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>5/PO 20/03/06</td>
<td>10,40</td>
<td>1,80</td>
<td>4,00</td>
<td>0,16</td>
<td>6,80</td>
<td>ILD</td>
<td>2.360</td>
<td></td>
</tr>
<tr>
<td>5/PO 11/04/06</td>
<td>9,00</td>
<td>1,50</td>
<td>5,00</td>
<td>0,13</td>
<td>5,40</td>
<td>ILD</td>
<td>4.900</td>
<td></td>
</tr>
<tr>
<td>5/PO 04/05/06</td>
<td>10,30</td>
<td>ILD</td>
<td>ILD</td>
<td>0,20</td>
<td>5,20</td>
<td>ILD</td>
<td>9.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 06/06/06</td>
<td>10,50</td>
<td>1,20</td>
<td>5,00</td>
<td>0,39</td>
<td>5,20</td>
<td>ILD</td>
<td>68.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 04/07/06</td>
<td>8,60</td>
<td>ILD</td>
<td>ILD</td>
<td>0,41</td>
<td>5,60</td>
<td>ILD</td>
<td>42.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 01/08/06</td>
<td>9,60</td>
<td>2,00</td>
<td>6,00</td>
<td>0,11</td>
<td>4,50</td>
<td>ILD</td>
<td>16.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 12/09/06</td>
<td>11,20</td>
<td>1,20</td>
<td>4,00</td>
<td>0,11</td>
<td>4,50</td>
<td>ILD</td>
<td>16.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 11/10/06</td>
<td>8,00</td>
<td>1,20</td>
<td>4,00</td>
<td>0,10</td>
<td>3,80</td>
<td>0,64</td>
<td>40.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 09/11/06</td>
<td>11,70</td>
<td>1,50</td>
<td>6,00</td>
<td>0,28</td>
<td>10,60</td>
<td>ILD</td>
<td>22.000</td>
<td></td>
</tr>
<tr>
<td>5/PO 05/12/06</td>
<td>12,20</td>
<td>1,10</td>
<td>4,00</td>
<td>0,56</td>
<td>5,70</td>
<td>0,56</td>
<td>15.000</td>
<td></td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori o prossimi al limite di determinazione in tutte le campagne.

Antiparassitari anch’essi tutti inferiori al limite di determinazione; IPA assenti.

Per il SACA si conferma il valore pari a 2 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Anche in questa stazione, analogamente ad altre, durante il 2006 si è verificato un forte recupero dei parametri temperatura dell’acqua e ossigeno disciolto che hanno contribuito alla assegnazione di un giudizio di qualità adatto al sostentamento delle specie salmonicole, in accordo con la maggioranza dei dati pregressi in nostro possesso e recuperando l’anomalo giudizio assegnato lo scorso anno (ciprinicola), proprio a causa dell’andamento dei due parametri sopra citati.

Stazione 9 PO : Macerata – Acquesalate

Stato Ecologico

Analogamente allo scorso anno, la valutazione dei dati dimostra come sia tendenzialmente peggiore il risultato fornito dall’IBE (livello 3) rispetto a quello relativo ai macrodescrittori (livello 2).

Per quanto concerne i singoli macrodescrittori, quelli che maggiormente condizionano il comportamento del punteggio LIM sono: azoto nitrico ammoniacale ed E.coli.

L’assegnazione del SECA è pari a 3.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/PO</td>
<td>13/01/06</td>
<td>8,50</td>
<td>ILD</td>
<td>ILD</td>
<td>0,13</td>
<td>15,00</td>
<td>ILD</td>
<td>3.300</td>
</tr>
<tr>
<td>9/PO</td>
<td>07/02/06</td>
<td>7,70</td>
<td>ILD</td>
<td>ILD</td>
<td>0,20</td>
<td>17,00</td>
<td>ILD</td>
<td>100</td>
</tr>
<tr>
<td>9/PO</td>
<td>20/03/06</td>
<td>10,70</td>
<td>2,90</td>
<td>7,00</td>
<td>ILD</td>
<td>13,20</td>
<td>ILD</td>
<td>1.300</td>
</tr>
<tr>
<td>9/PO</td>
<td>11/04/06</td>
<td>8,60</td>
<td>1,50</td>
<td>5,00</td>
<td>ILD</td>
<td>11,60</td>
<td>ILD</td>
<td>2.500</td>
</tr>
<tr>
<td>9/PO</td>
<td>04/05/06</td>
<td>10,10</td>
<td>ILD</td>
<td>ILD</td>
<td>13,00</td>
<td>ILD</td>
<td>1.100</td>
<td></td>
</tr>
<tr>
<td>9/PO</td>
<td>06/06/06</td>
<td>10,60</td>
<td>ILD</td>
<td>3,00</td>
<td>0,23</td>
<td>12,30</td>
<td>ILD</td>
<td>7.100</td>
</tr>
<tr>
<td>9/PO</td>
<td>04/07/06</td>
<td>8,20</td>
<td>1,20</td>
<td>5,00</td>
<td>0,21</td>
<td>10,90</td>
<td>ILD</td>
<td>1.100</td>
</tr>
<tr>
<td>9/PO</td>
<td>01/08/06</td>
<td>9,70</td>
<td>2,10</td>
<td>7,00</td>
<td>0,16</td>
<td>7,00</td>
<td>ILD</td>
<td>2.400</td>
</tr>
<tr>
<td>9/PO</td>
<td>12/09/06</td>
<td>10,30</td>
<td>1,10</td>
<td>4,00</td>
<td>ILD</td>
<td>7,60</td>
<td>ILD</td>
<td>2.400</td>
</tr>
<tr>
<td>9/PO</td>
<td>11/10/06</td>
<td>9,50</td>
<td>ILD</td>
<td>ILD</td>
<td>0,26</td>
<td>9,40</td>
<td>0,65</td>
<td>1.800</td>
</tr>
<tr>
<td>9/PO</td>
<td>09/11/06</td>
<td>12,00</td>
<td>3,50</td>
<td>13,00</td>
<td>0,19</td>
<td>14,10</td>
<td>ILD</td>
<td>8.000</td>
</tr>
<tr>
<td>9/PO</td>
<td>05/12/06</td>
<td>12,30</td>
<td>1,20</td>
<td>5,00</td>
<td>0,25</td>
<td>10,80</td>
<td>ILD</td>
<td>3.900</td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori o prossimi al limite di determinazione in tutte le campagne.
Antiparassitari anch’essi tutti inferiori al limite di determinazione; IPA assenti.
Per il SACA si conferma il valore pari a 3 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Tale stazione è risultata essere idonea al solo sostentamento delle specie ciprinicole a causa di due superamenti del parametro temperatura dell’acqua di cui uno durante il periodo riproduttivo.

Benché in linea con la classificazione dello scorso anno, i superamenti sono stati in numero molto meno elevato.

Stazione 11 PO : Recanati – Chiarino

Stato Ecologico

In questa stazione vengono confermati i dati IBE del 2005 (livello 3), mentre il LIM resta confinato nel range corrispondente ad una classe 2 analogamente allo scorso anno.

Rimangono comunque ancora bassi i punteggi relativi ai parametri E.coli, azoto nitrico e ammoniacale.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data_prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/PO</td>
<td>13/01/06</td>
<td>8,60</td>
<td>ILD</td>
<td>ILD</td>
<td>0,17</td>
<td>19,60</td>
<td>ILD</td>
<td>5.800</td>
</tr>
<tr>
<td>11/PO</td>
<td>07/02/06</td>
<td>7,60</td>
<td>ILD</td>
<td>ILD</td>
<td>0,37</td>
<td>20,40</td>
<td>ILD</td>
<td>100</td>
</tr>
<tr>
<td>11/PO</td>
<td>20/03/06</td>
<td>10,80</td>
<td>2,30</td>
<td>4,00</td>
<td>0,15</td>
<td>17,30</td>
<td>ILD</td>
<td>1.400</td>
</tr>
<tr>
<td>11/PO</td>
<td>11/04/06</td>
<td>8,70</td>
<td>2,00</td>
<td>6,00</td>
<td>ILD</td>
<td>16,90</td>
<td>ILD</td>
<td>2.700</td>
</tr>
<tr>
<td>11/PO</td>
<td>04/05/06</td>
<td>9,60</td>
<td>ILD</td>
<td>ILD</td>
<td>17,60</td>
<td>ILD</td>
<td>1.300</td>
<td></td>
</tr>
<tr>
<td>11/PO</td>
<td>06/06/06</td>
<td>10,70</td>
<td>1,10</td>
<td>4,00</td>
<td>0,26</td>
<td>17,70</td>
<td>ILD</td>
<td>18.000</td>
</tr>
<tr>
<td>11/PO</td>
<td>04/07/06</td>
<td>7,80</td>
<td>ILD</td>
<td>ILD</td>
<td>0,25</td>
<td>15,10</td>
<td>ILD</td>
<td>1.700</td>
</tr>
<tr>
<td>11/PO</td>
<td>01/08/06</td>
<td>9,00</td>
<td>1,90</td>
<td>6,00</td>
<td>0,23</td>
<td>32,10</td>
<td>ILD</td>
<td>2.300</td>
</tr>
<tr>
<td>11/PO</td>
<td>12/09/06</td>
<td>10,20</td>
<td>1,20</td>
<td>4,00</td>
<td>ILD</td>
<td>13,40</td>
<td>ILD</td>
<td>2.400</td>
</tr>
<tr>
<td>11/PO</td>
<td>11/10/06</td>
<td>8,90</td>
<td>1,20</td>
<td>5,00</td>
<td>ILD</td>
<td>16,90</td>
<td>ILD</td>
<td>6.700</td>
</tr>
<tr>
<td>11/PO</td>
<td>09/11/06</td>
<td>12,60</td>
<td>2,80</td>
<td>11,00</td>
<td>ILD</td>
<td>20,30</td>
<td>ILD</td>
<td>4.900</td>
</tr>
<tr>
<td>11/PO</td>
<td>05/12/06</td>
<td>11,00</td>
<td>1,40</td>
<td>5,00</td>
<td>0,31</td>
<td>17,60</td>
<td>0,12</td>
<td>4.000</td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori o prossimi al limite di determinazione in tutte le campagne; antiparassitari anch’essi tutti inferiori al limite di determinazione.

Metalli sempre a bassissime concentrazioni; IPA assenti.

Per il SACA si conferma il valore pari a 3 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I risultati analitici hanno fatto registrare dati di qualità adatti al sostentamento delle specie ciprinicole.

E’ stato infatti superato, relativamente alla temperatura e per tre volte, il limite imperativo per i salmonicoli; un superamento è relativo al periodo riproduttivo.

L’ossigeno disciolto è stato inferiore a 9 in cinque campioni su dodici.

Stazione 12 PO : Porto Recanati – foce

Stato Ecologico

In questa stazione vengono confermati i dati IBE del 2005 (livello 3), mentre il LIM resta confinato nel range corrispondente ad una classe 2 analogamente allo scorso anno.

Rimangono comunque ancora bassi i punteggi relativi ai parametri E.coli, azoto nitrico e ammoniacale.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/PO 1</td>
<td>13/01/06</td>
<td>8,80</td>
<td>ILD</td>
<td>ILD</td>
<td>0,21</td>
<td>20,30</td>
<td>ILD</td>
<td>7.000</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>07/02/06</td>
<td>7,90</td>
<td>ILD</td>
<td>ILD</td>
<td>0,46</td>
<td>21,40</td>
<td>ILD</td>
<td>2.000</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>20/03/06</td>
<td>10,90</td>
<td>2,80</td>
<td>7,00</td>
<td>0,17</td>
<td>17,60</td>
<td>ILD</td>
<td>1.150</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>11/04/06</td>
<td>8,70</td>
<td>1,80</td>
<td>6,00</td>
<td>0,31</td>
<td>17,70</td>
<td>ILD</td>
<td>3.800</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>04/05/06</td>
<td>10,00</td>
<td>ILD</td>
<td>ILD</td>
<td>18,70</td>
<td>ILD</td>
<td>1.200</td>
<td></td>
</tr>
<tr>
<td>12/PO 1</td>
<td>06/06/06</td>
<td>10,20</td>
<td>1,30</td>
<td>6,00</td>
<td>0,39</td>
<td>18,40</td>
<td>0,06</td>
<td>26.000</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>04/07/06</td>
<td>7,60</td>
<td>2,00</td>
<td>7,00</td>
<td>1,37</td>
<td>14,10</td>
<td>ILD</td>
<td>9.000</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>01/08/06</td>
<td>8,70</td>
<td>2,50</td>
<td>8,00</td>
<td>0,25</td>
<td>10,30</td>
<td>ILD</td>
<td>2.900</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>12/09/06</td>
<td>10,60</td>
<td>2,10</td>
<td>8,00</td>
<td>ILD</td>
<td>15,00</td>
<td>ILD</td>
<td>1.300</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>11/10/06</td>
<td>8,20</td>
<td>1,10</td>
<td>4,00</td>
<td>0,32</td>
<td>18,10</td>
<td>ILD</td>
<td>2.100</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>09/11/06</td>
<td>12,90</td>
<td>2,80</td>
<td>12,00</td>
<td>ILD</td>
<td>44,70</td>
<td>ILD</td>
<td>4.300</td>
</tr>
<tr>
<td>12/PO 1</td>
<td>05/12/06</td>
<td>11,20</td>
<td>1,30</td>
<td>5,00</td>
<td>0,46</td>
<td>18,70</td>
<td>0,20</td>
<td>12.400</td>
</tr>
</tbody>
</table>
Stazione 12P0
Andamento annuale dell'U; Duratura

Stazione 12P0
Andamento annuale del COD

Stazione 12P0
Andamento annuale dell'Acido Nitrico

Stazione 12P0
Andamento annuale del Fosforo Totale F

Stazione 12P0
Andamento annuale delle Escherichia coli
Stato Chimico

VOC inferiori o prossimi al limite di determinazione in tutte le campagne.
Antiparassitari anch’essi tutti inferiori al limite di determinazione
Metalli sempre a bassissime concentrazioni; IPA assenti.

Per il SACA si conferma il valore pari a 3 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono comunque ancora inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I risultati analitici hanno fatto registrare dati di qualità adatti al sostentamento delle specie ciprinicole.

E’ stato infatti superato, relativamente alla temperatura e per tre volte, il limite imperativo per i salmonicoli; un superamento è relativo al periodo riproduttivo.

L’ossigeno disciolto è stato inferiore a 9 in sei campioni su dodici.

Asta fluviale: Tevere

Corso d’acqua: Nera

Stazione 3 NE: Visso – Ponte Chiusita

Stato Ecologico

In questa stazione, analogamente a quanto rilevato nel corso del precedente anno, i risultati ottenuti dalla valutazione dei parametri chimico-fisici ha evidenziato compatibilità con un livello di qualità pari a 2 mentre l’IBE è peggiorato passando ad un valore di 8 per cui si pone ad un livello 2.

All’assegnazione di un SECA di 2 contribuiscono quest’anno sia il LIM, con punteggio in linea a quello dello scorso anno, che l’IBE passato, da 11 a 8.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/NE</td>
<td>16/01/06</td>
<td>7,40</td>
<td>ILD</td>
<td>ILD</td>
<td>2,50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/NE</td>
<td>14/02/06</td>
<td>9,70</td>
<td>1,70</td>
<td>7,00</td>
<td>0,08</td>
<td>2,00</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3/NE</td>
<td>22/03/06</td>
<td>9,40</td>
<td>ILD</td>
<td>ILD</td>
<td>2,10</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>3/NE</td>
<td>26/04/06</td>
<td>9,90</td>
<td>ILD</td>
<td>ILD</td>
<td>0,08</td>
<td>3,40</td>
<td></td>
<td>180</td>
</tr>
<tr>
<td>3/NE</td>
<td>30/05/06</td>
<td>9,80</td>
<td>ILD</td>
<td>ILD</td>
<td>0,03</td>
<td>3,00</td>
<td></td>
<td>480</td>
</tr>
<tr>
<td>3/NE</td>
<td>28/06/06</td>
<td>9,50</td>
<td>ILD</td>
<td>ILD</td>
<td>0,04</td>
<td>1,90</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>3/NE</td>
<td>04/07/06</td>
<td>8,80</td>
<td>ILD</td>
<td>ILD</td>
<td>2,10</td>
<td></td>
<td></td>
<td>1,280</td>
</tr>
<tr>
<td>3/NE</td>
<td>21/08/06</td>
<td>8,60</td>
<td>ILD</td>
<td>ILD</td>
<td>2,60</td>
<td></td>
<td></td>
<td>2,890</td>
</tr>
<tr>
<td>3/NE</td>
<td>12/09/06</td>
<td>8,00</td>
<td>ILD</td>
<td>ILD</td>
<td>0,06</td>
<td>2,90</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>3/NE</td>
<td>17/10/06</td>
<td>9,20</td>
<td>1,00</td>
<td>ILD</td>
<td></td>
<td></td>
<td></td>
<td>530</td>
</tr>
<tr>
<td>3/NE</td>
<td>30/11/06</td>
<td>14,50</td>
<td>1,20</td>
<td>2,00</td>
<td></td>
<td></td>
<td></td>
<td>1,120</td>
</tr>
<tr>
<td>3/NE</td>
<td>19/12/06</td>
<td>10,80</td>
<td>ILD</td>
<td>ILD</td>
<td>0,08</td>
<td>2,40</td>
<td></td>
<td>850</td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori al limite di determinazione in tutte le campagne.
Antiparassitari anch’essi tutti inferiori o prossimi al limite di determinazione.
Metalli sempre a bassissime concentrazioni; IPA assenti.
Per il SACA si conferma il valore pari a 2 ottenuto dal SECA

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Anche in questa stazione, analogamente ad altre, durante il 2006 si è verificato un forte recupero dei parametri temperatura dell’acqua e ossigeno disciolto che hanno contribuito alla assegnazione di un giudizio di qualità adatto al sostentamento delle specie salmonicole, in accordo con la maggioranza dei dati pregressi in nostro possesso e recuperando l’anomalo giudizio assegnato lo scorso anno (ciprinicola), proprio a causa dell’andamento dei due parametri sopra citati.

Asta fluviale: Musone

Corso d’acqua: Musone

Stazione 4 MU: Cingoli – Cascatelle

Stato Ecologico

Tale stazione è la migliore tra quelle monitorate in provincia di Macerata ed è l’unica ad ottenere uno stato di qualità “ottimo” con performance notevoli sia del LIM che dell’IBE.

Tutti i macrodescritori raggiungono il massimo del punteggio con leggere defaillance di nitrato e ossigeno disciolto.

L’IBE addirittura è stato pari a oltre 12.

<table>
<thead>
<tr>
<th>STAZIONE</th>
<th>Data prelievo</th>
<th>OSD</th>
<th>BOD</th>
<th>COD</th>
<th>AZA</th>
<th>ANI</th>
<th>FRO</th>
<th>ESR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/MU</td>
<td>18/01/2006</td>
<td>7,90</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>5,60</td>
<td>ILD</td>
<td>2</td>
</tr>
<tr>
<td>4/MU</td>
<td>13/02/2006</td>
<td>10,30</td>
<td>ILD</td>
<td>ILD</td>
<td>0,12</td>
<td>35,00</td>
<td>ILD</td>
<td>0</td>
</tr>
<tr>
<td>4/MU</td>
<td>20/03/2006</td>
<td>9,80</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>6,50</td>
<td>ILD</td>
<td>2</td>
</tr>
<tr>
<td>4/MU</td>
<td>26/04/2006</td>
<td>9,30</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>8,60</td>
<td>ILD</td>
<td>30</td>
</tr>
<tr>
<td>4/MU</td>
<td>03/05/2006</td>
<td>7,40</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>6,60</td>
<td>ILD</td>
<td>16</td>
</tr>
<tr>
<td>4/MU</td>
<td>06/06/2006</td>
<td>10,90</td>
<td>ILD</td>
<td>ILD</td>
<td>ILD</td>
<td>6,10</td>
<td>ILD</td>
<td>15</td>
</tr>
<tr>
<td>4/MU</td>
<td>04/07/2006</td>
<td>11,00</td>
<td>1,10</td>
<td>4,00</td>
<td>ILD</td>
<td>5,90</td>
<td>ILD</td>
<td>26</td>
</tr>
<tr>
<td>4/MU</td>
<td>01/08/2006</td>
<td>9,70</td>
<td>1,80</td>
<td>5,00</td>
<td>ILD</td>
<td>5,50</td>
<td>ILD</td>
<td>22</td>
</tr>
<tr>
<td>4/MU</td>
<td>12/09/2006</td>
<td>10,30</td>
<td>1,10</td>
<td>3,00</td>
<td>0,27</td>
<td>1,00</td>
<td>ILD</td>
<td>26</td>
</tr>
<tr>
<td>4/MU</td>
<td>09/10/2006</td>
<td>9,10</td>
<td>1,20</td>
<td>5,00</td>
<td>ILD</td>
<td>5,00</td>
<td>ILD</td>
<td>20</td>
</tr>
<tr>
<td>4/MU</td>
<td>07/11/2006</td>
<td>10,40</td>
<td>ILD</td>
<td>ILD</td>
<td>0,20</td>
<td>2,00</td>
<td>ILD</td>
<td>16</td>
</tr>
<tr>
<td>4/MU</td>
<td>05/12/2006</td>
<td>10,10</td>
<td>1,20</td>
<td>5,00</td>
<td>ILD</td>
<td>5,80</td>
<td>ILD</td>
<td>10</td>
</tr>
</tbody>
</table>
Stato Chimico

VOC inferiori al limite di determinazione in tutte le campagne.
Antiparassitari inferiori o prossimi al limite di determinazione.
Metalli sempre a bassissime concentrazioni; IPA assenti.

Per il SACA si conferma il valore pari a 2 ottenuto dal SECA.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

Anche in questa stazione, analogamente ad altre, durante il 2006 si è verificato un forte recupero dei parametri temperatura dell’acqua e ossigeno disciolto che hanno contribuito alla assegnazione di un giudizio di qualità adatto al sostentamento delle specie salmonicole, in accordo con la maggioranza dei dati pregressi in nostro possesso e recuperando l’anomalo giudizio assegnato lo scorso anno (ciminicolare), proprio a causa dell’andamento dei due parametri sopra citati.

Nessuna non conformità per la temperatura e solo due su dodici per l’ossigeno disciolto.

Laghi

Bacino: Chienti

Corpo idrico: lago Fiastrone

Stazione 1L/CH (a mt.20 dalla diga)

Stato Ecologico

Questa classificazione è stata fatta tenendo conto delle indicazioni fornite dal Decreto 29/12/2003 n.391.

I parametri che hanno determinato questo risultato sono stati trasparenza e ossigeno ipolimnico i quali hanno assunto valori compatibili con livelli pari a 4 e 3, rispettivamente.

Nel complesso il SEL si riconferma pari a tre, come nel 2005.

Stato Chimico

VOC inferiori al limite di determinazione in tutte le campagne; Pesticidi inferiori o prossimi al limite di determinazione; IPA assenti.

Metalli sempre a bassissime concentrazioni.
Per il SAL si conferma il valore pari a 3 del SEL.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I valori dei singoli parametri nei campionamenti mensili effettuati nel corso del 2006, permettono di classificare tale stazione ancora idonea al sostentamento delle specie salmonicole.

Come per i fiumi, anche nel corso del 2006 sono stati rilevati notevoli miglioramenti relativamente parametri temperatura e ossigeno disciolto che hanno a loro volta esibito pochissime non conformità.

Bacino: Musone

Corpo idrico: lago di Castreccioni

Stazione 1L/MU (a mt.200 dalla diga)

Stato Ecologico

Questa classificazione è stata fatta tenendo conto delle indicazioni fornite dal Decreto 29/12/2003 n.391.

Anche in questo caso i parametri che hanno determinato questo risultato sono stati soprattutto trasparenza e ossigeno ipolimnico i quali hanno assunto valori compatibili con livelli 3.

Nel complesso il SEL peggiora rispetto al 2005 passando da due a tre.

Stato Chimico

VOC inferiori al limite di determinazione in tutte le campagne;

Pesticidi inferiori o prossimi al limite di determinazione; IPA assenti.

Metalli sempre a bassissime concentrazioni

Per il SAL si conferma il valore pari a 3 del SEL.

Le concentrazioni dei parametri ricercati sono inferiori a quelle dei rispettivi criteri di qualità per il 2008 fissati dal D.Lgs. 152/2006, per lo meno relativamente a quelle sostanze che sono espressamente contemplate dalla tabella 1/A dell’all.1 alla parte terza del suddetto Decreto.

Idoneità alla vita dei pesci

I risultati ottenuti nei vari campionamenti mensili effettuati nel corso del 2006, confermano la classificazione dell’anno precedente (acque ciprinicole).

Ci sono stati superamenti del valore imperativo per i salmonidi del parametro temperatura dell’acqua verificatosi 7 volte su 12, compreso il periodo riproduttivo, e del parametro ossigeno disciolto, che ha fornito dati di concentrazione < 9 mg/l in sei campioni su 12.
Sedimenti fluviali

L’analisi chimica dei sedimenti ha riguardato, relativamente il territorio provinciale di Macerata, due stazioni e precisamente:

11 PO (Chiarino) per il Potenza
14 CH (parco fluviale) per il Chienti.

Il criterio di scelta delle stazioni è stato di preferire quelle in prossimità della chiusura di bacino e appartenenti alla rete nazionale.

I parametri ricercati hanno riguardato specifici inquinanti appartenenti alle seguenti classi di composti:

- metalli
- organo alogenati (alcuni pesticidi, PCB)
- IPA

Non essendo al momento disponibili criteri di confronto, per la valutazione dei relativi livelli di contaminazione sono stati utilizzati i limiti previsti dalla tab.1-colonna A all.5 parte IV del nuovo D.Lgs.152/2006, che nella fattispecie corrispondono quasi specularmente alle tabelle dei limiti previsti dal D.M.471/99.

I risultati ottenuti comunque non hanno messo in evidenza situazioni o particolari criticità degne di nota.
Monitoraggio eseguito dal Dipartimento di Ascoli Piceno

Il monitoraggio delle acque superficiali della provincia di Ascoli Piceno comprende sia quello per la classificazione ecologico-ambientale dei corsi d’acqua superficiali di cui all’allegato 1 del D.Lgs 152/99, sia quello per la classificazione delle acque dolci superficiali idonee alla vita dei pesci. Le acque dolci sono classificate in salmonicole e ciprinicole in base allo stato di qualità definito dalla conformità di una serie di parametri chimici e fisici a valori guida e a valori imperativi stabiliti all’allegato 2 Sez B del D.Lgs 152/99. (Decreto Legislativo n. 15272006,

E’ importante ricordare che nella provincia di Ascoli Piceno i corsi d’acqua hanno carattere torrentizio con notevoli variazioni di portata tra il periodo invernale, in cui sono concentrate le precipitazioni, e quello estivo.

Si premette che i tre maggiori fiumi significativi piceni, Tronto, Aso e Tenna, nel tratto appenninico e/o pedeappenninico sono caratterizzati da regimazione indotta per la presenza di invasi artificiali a scopo idroelettrico e irriguo.

La situazione più frequente riscontrabile a valle di ciascun sbarramento è caratterizzata da scarsa portata e da oscillazioni di flusso idrico con conseguente criticità del tratto fluviale.

Il tratto pedeappenninico, per natura più vulnerabile perché a detrito, è caratterizzato da opere di “sistemazione idraulica” (riprofilazione degli argini), con conseguente diminuzione dei tempi di corruccione, anche in conseguenza del regime indotto da monte dalle derivazioni idroelettriche ed irrigue e dalle captazioni nel sub alveo per scopi industriali. Nell’arco delle 24 ore si registrano consistenti variazioni di portata che, a causa della conseguente variazione di velocità del flusso idrico, sono responsabili delle variazioni circa la qualità delle acque.

A fondo valle, ossia negli ultimi dieci chilometri di percorso, i fiumi scorrono in zone particolarmente antropizzate per la presenza di attività industriali, artigianali e agricole e l’intensificazione di agglomerati abitativi.

Il monitoraggio delle acque viene attuato attraverso una rete provinciale composta da 16 stazioni di prelievo e misura.

In tali stazioni sono state campionate acque per le analisi chimico-fisiche e batteriologiche con frequenza mensile e sono state effettuate determinazioni di indice Biotico Esteso (IBE) con frequenza semestrale.

La determinazione dell’IBE è stata effettuata dal personale in forza al dipartimento di Ascoli P. ricorrendo saltuariamente al supporto tecnico di personale qualificato del dipartimento di Ancona soltanto in casi di dubbi nell’identificazione dei macroinvertebrati.
Il bacino idrografico del fiume Tronto

![Diagramma del bacino idrografico del fiume Tronto](image)

Fig. 1: Qualità delle acque del fiume Tronto lungo il suo percorso; anno 2006

L’istogramma di fig. 1 mette in evidenza la variazione della qualità dell’acqua del f. Tronto lungo il suo corso. Come si può osservare, la qualità delle acque è tra “buono” e “sufficiente” per il primo tratto, “sufficiente” per il tratto di chiusura bacino.

Nel primo tratto, dall’abitato di Acquasanta Terme fino ad Ascoli P., il fiume è interessato da ripetute derivazioni per uso idroelettrico. Evidentemente, essendo minore la pressione antropica, l’elevato potere autodepurativo del fiume è tale da rendere “buona” la qualità delle sue acque.

Poche sono le industrie che scaricano i propri reflui di lavorazione direttamente nel fiume; una buona parte di detti scarichi sono collettati al depuratore consortile del Nucleo Industriale sito nella zona di Campolungo di Ascoli P. (Potenzialità attuale 81.000 a.e.).

Stazione 2TR Ecotipo appenninico / zona ad erosione Stazione sita a valle del lago artificiale di Colombara /Tallacano (capacità di accumulo 235.000 m3) e a monte dello sbarramento di Mozzano, entrambi a scopo idroelettrico

Da segnalare nella zona a monte degli invasi sopracitati la presenza di numerose sorgenti sulfuree che trovano recapito nel fiume Tronto cambiandone significativamente la composizione chimica delle acque.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>7</td>
<td>7/8</td>
<td>7/8</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>
Le indagini analitiche effettuate nel corso del 2006 confermano lo stato di qualità registrato nel 2005; per quanto riguarda la vita dei pesci, il risultato conforme non tiene conto del superamento del limite del valore di temperatura registrato nel periodo di riproduzione (12°C prelievo di dicembre), in quanto fa riferimento ad una misurazione mensile invece che alle quattro richieste per legge. Si segnala ciò al fine di verificare, in avvenire, la ripetibilità dell’evento.

Anche nel 2006 si evidenziano forti fluttuazioni temporali della conducibilità e dei cloruri che caratterizzano la qualità dell’acqua di scorrimento da tale stazione di rilevamento fino alla foce.

Le cause di tali fluttuazioni di composizione chimica non sono state ancora individuate, ma un ruolo importante si pensa possa essere attribuito alle numerose immissioni di acque sulfuree più a monte e alla regimazione delle portate a cui è sottoposto il corso d’acqua.

Non si esclude l’influenza di qualche sorgente sulfurea immediatamente a monte del punto di prelievo e ancora non individuata.

Un primo dato certo che emerge dall’analisi dei risultati ottenuti è quello relativo ai metalli pesanti (Cd, Cu, Cr, Pb, As, Ni, Hg), fenoli, tensioattivi e idrocarburi di origine petrolifera: tali parametri risultano sempre inferiori ai limiti indicati nel D.Lgs. 152/2006 sulla qualità delle acque idonee alla vita dei pesci; tale sistematicità è riscontrabile sia per il fiume Tronto sia per i suoi principali affluenti.

La stazione monitorata presenta un stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008, ciò era nelle previsioni in base al modesto grado di antropizzazione della zona.

Stazione 3/TR Ecotipo sub appenninico /zona ad erosione -deposito.

L’alveo del fiume è alimentato dal deflusso rilasciato dal bacino di Mozzano. Tale bacino è recettore delle acque del torrente Fluvione e delle reimmissioni operate dalla centrale idroelettrica di Capodiponte (acque del Castellano provenienti dal bacino artificiale di Talvacchia e acque del bacino idroelettrico di Colombara /Tallacano).

Le indagini analitiche effettuate nel corso del 2006 rilevano:
La concentrazione dell’azoto ammoniacale, benché a livelli bassi, condiziona la qualità dell’acqua alla vita dei ciprinidi. Il valore medio dei dati registrati è vicino a quello guida suggerito dalla normativa vigente.

A valle di tale stazione, per un tratto di otto chilometri ed esattamente dall’abitato di Ascoli P. fino all’abitato di Castel di Lama, i sedimenti del fiume sono ricchi di Idrocarburi Policiclici Aromatici (IPA) la cui provenienza è stata accertata essere di origine industriale.

Da registrare sempre a valle della stazione 3/TR, proprio in corrispondenza dell’abitato di Ascoli P., la presenza di due fenomeni di origine naturale:

- la confluenza nelle acque del fiume Tronto (sponda destra) di acque ricche di arsenico (circa 20 ug/l -fiume Castellano a partire dall’abitato di Castel Trosino).
- confluenza nel fiume Tronto di acque fortemente torbide del torrente Chiaro durante la stagione invernale (gennaio febbraio) a causa della natura del terreno nella parte sinistra del fiume Tronto (terreno ricco di calanchi) e della scarsa recettività dello stesso f. Tronto in tale periodo.

A valle dell’abitato di Ascoli P. – località Brecciarolo e Marino del Tronto,- esistono molto ravvicinati, due derivazioni di acque, la prima direttamente dal fiume per uso idroelettrico (intero anno) e irriguo (da aprile a ottobre), la seconda dal sub alveo per uso industriale.

La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008, ciò era nelle previsioni in base al modesto grado di antropizzazione della zona.

I dati relativi alle determinazioni degli IPA, dei solventi aromatici e clorurati e dei pesticidi clorurati sulle acque e sui sedimenti, effettuati nell’ambito dell’accordo di programma quadro per la tutela delle acque, non hanno evidenziato valori di concentrazione meritevoli di attenzione, né detti valori hanno modificato in qualche modo l’indice SECA.

<table>
<thead>
<tr>
<th>SECA</th>
<th>II</th>
<th>II</th>
<th>II</th>
<th>stazionaria (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SACA</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Ciprinicole</td>
<td>Ciprinicole</td>
<td>ciprinicole</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>
Stazione 6/TR Ecotipo pede -appenninico / zona a deposito. L’alveo del fiume scorre in una zona particolarmente antropizzata per la presenza di attività industriali, artigianali e agricole e l’intensificazione di agglomerati abitativi.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>3°</td>
<td>3°</td>
<td>3</td>
<td>stazionaria(↑)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>7</td>
<td>6</td>
<td>7/8</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria(↑)</td>
</tr>
<tr>
<td>SECA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria(↑)</td>
</tr>
<tr>
<td>SACA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria(↑)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Ciprinicola</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>stazionaria(↑)</td>
</tr>
</tbody>
</table>

La morfologia naturale del letto è tale da agevolare il mantenimento di tali condizioni. Le conseguenze degli apporti antropici sono ben contenute grazie all’effetto di diluizione ed all’apprezzabile capacità autodепurativa del corpo idrico.

Il recupero della qualità dell’acqua a “buono” e dell’idoneità alla vita dei ciprinicoli potrebbero essere raggiunti con l’avvenuto collettamento dei reflui urbani provenienti dai diversi agglomerati della bassa valle del Tronto all’impianto di depurazione di San Benedetto del Tronto. Dall’analisi dei dati analitici, sia chimici che microbiologici, si evince che le acque di scorrimento in quel tratto sono ancora influenzate dai reflui urbani e domestici non depurati provenienti da entrambe le sponde. Non si escludono apporti di tipo industriale a giudicare anche dalle concentrazioni di arsenico registrate, sia pure occasionalmente e con il corso d’acqua in regime di magra, in tale tratto di fiume e in misura leggermente inferiore nel tratto successivo (TR7).

La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

Stazione 7TR Ecotipo pede appenninico / zona a deposito. Chiusura di bacino idrografico. L’alveo del fiume scorre in una zona particolarmente antropizzata.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>2°</td>
<td>2°</td>
<td>3</td>
<td>a peggiorare (↓)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>1/2</td>
<td>4</td>
<td>7</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>V</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
</tbody>
</table>
Permane sempre la criticità rappresentata da abbondante sedimento fangoso presente nel letto del fiume a causa del lento deflusso delle acque in quel tratto. È probabile che il miglioramento di classe registrato sia dovuto alla canalizzazione dei reflui urbani della bassa valle fino al depuratore di San Benedetto del Tronto.

AFFLUENTE: Torrente Fluvione

Stazione 1/FV Ecotipo sub appenninico /zona prevalentemente ad erosione - sita a valle dell’abitato di Roccafluvione (Mulino Brandi).

La stazione, posta a 250 m s.l.m, è caratterizzata da sponde rocciose con fascia perifluviale arboreo arbustiva che offre all’ alveo una copertura pari al 70%.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>7/6</td>
<td>9</td>
<td>8</td>
<td>a peggiorare(↓)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SECA</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria(+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Ciprinicole</td>
<td>Ciprinicole</td>
<td>Ciprinicole</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>

Si riscontrano variazioni dello stato ecologico rispetto al 2004.
La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.
Gli attingimenti al fiume per uso idroelettrico e agricolo, se ne contano 9, sono regolarmente distribuiti su tutto il suo percorso.

Le attività industriali predominanti sono rappresentate dal settore calzaturiero, manifatturiero e agricolo.

Esiste un invaso artificiale nella parte alta del fiume che raggiunge il suo livello massimo nei mesi di aprile- maggio e il cui rilascio a scopo irriguo regina il tratto sotteso del f. Tenna, durante la stagione estiva.

A fine stagione il lago si prosciuga restituendo al corso d’acqua il suo alveo naturale.

A fondo valle, ossia negli ultimi dieci chilometri di percorso, il fiume scorre in zone particolarmente antropizzate per la presenza di attività industriali, artigianali e agricole e l’intensificazione di agglomerati abitativi.

Stazione 2TN Ecotipo appenninico / zona ad erosione Stazione sita 400 metri a valle dell’invaso artificiale a scopo irriguo di San Ruffino (capacità d’invaso=2,5 milioni di m3).

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (++)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>7/6</td>
<td>8</td>
<td>8</td>
<td>stazionaria (++)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria (++)</td>
</tr>
<tr>
<td>SECA</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria (++)</td>
</tr>
<tr>
<td>SACA</td>
<td>III</td>
<td>II</td>
<td>II</td>
<td>stazionaria (++)</td>
</tr>
</tbody>
</table>
Rispetto al 2004 si registrano variazioni dello stato ecologico, essendo la classe di qualità avanzata di un salto.

Il livello di qualità dal punto di vista prettamente chimico (LIM) risulta “buono” indicando in tale tratto di fiume una bassa pressione antropica da insediamenti abitativi e industriali. Salvo qualche eccezione, le concentrazioni di azoto ammoniacale e di quello nitrico indicano bassa pressione antropica e buona capacità autodepurativa.

La concentrazione dell’azoto ammoniacale, sia pure a livelli bassi, condiziona le acque alla vita dei ciprinidi, essendo la media dei valori registrati vicini a quelli guida suggeriti dalla normativa vigente.

La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

Stazione 4/TN Ecotipo sub appenninico / zona ad erosione e deposito. Stazione sita a valle della derivazione ad uso irriguo del Consorzio di Bonifica Tenna (0,7 m3/sec)

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>5</td>
<td>6/7</td>
<td>6</td>
<td>a peggiorare (↓)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>IV</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SECA</td>
<td>IV</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>IV</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Ciprinicole</td>
<td>Ciprinicole</td>
<td>Ciprinicole</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>

Dal 2003 si registra una fluttuazione della qualità dell’acqua tra la terza e la quarta classe.

Il livello di qualità dal punto di vista prettamente chimico (LIM) risulta “buono” indicando in tale tratto di fiume una bassa pressione antropica da insediamenti abitativi e industriali. Le concentrazioni di azoto ammoniacale e ammoniaca libera risultano sempre nei rispettivi valori imperativi.

La concentrazione dell’azoto ammoniacale, sia pure a livelli bassi, condiziona la qualità delle acque alla vita dei ciprinidi.

La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.
Stazione 5/TN Ecotipo pede appenninico / zona a deposito. La stazione è sita immediatamente a monte della captazione ad uso irriguo del Consorzio bonifica Tenna ed immediatamente a valle delle immissioni di reflui della Zona industriale di Fermo.

Il tratto di alveo sotteso, reiteratamente, risulta caratterizzato da una elevata velocità di flusso idrico.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>2°</td>
<td>2°</td>
<td>3</td>
<td>a peggiorare (↓)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>5</td>
<td>5</td>
<td>7</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>SECA</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>SACA</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>stazionaria(+)</td>
</tr>
</tbody>
</table>

Rispetto al 2005, si registra una situazione a migliorare.

La zona è fortemente antropizzata: sono presenti attività industriali, agricole, commerciali e artigianali che hanno portato in breve tempo ad una intensificazione degli insediamenti abitativi privi delle necessarie infrastrutture adibite ad una adeguata depurazione dei reflui urbani prodotti.

I valori di concentrazione di azoto ammoniacale e ammoniaca libera, quelli di BOD5 e COD, talvolta elevati soprattutto nel periodo estivo, nonostante la buona recettività del corso d’acqua, ne sono una testimonianza.

E’ migliorata la qualità dell’acqua al livello “sufficiente”, ma non ancora la qualità dell’acqua alla vita dei ciprinidi per la frequenza con cui viene superato il valore guida del parametro ammoniaca.

Stazione 6/TN Ecotipo pede appenninico / zona a deposito Chiusura di bacino idrografico. La stazione è sita a valle del depuratore reflui urbani di P.S.Elpidio.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>3°</td>
<td>3°</td>
<td>3</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>
La zona è fortemente antropizzata: sono presenti attività industriali, agricole, commerciali e artigianali.

Tuttavia, anche in questo caso le acque risultano non idonee per la vita dei pesci in quanto il valore medio del materiale in sospensione è superiore al rispettivo limite imperativo. Occorre individuare la causa che determina la presenza di materiale inerte in sospensione, visto che nell’anno in corso possono essere escluse cause naturali. Si sospetta, quale causa, l’attività di ristrutturazione degli argini o dell’alveo non comunicate a questa Struttura.

La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

AFFLUENTI TENNA : Torrente Tennacola

Stazione 4/TE Ecotipo appenninico / zona ad erosione chiusura di bacino idrografico di II° ordine. La stazione è sita a valle del depuratore reflui urbani di Penna S. Giovanni

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>2°</td>
<td>2°</td>
<td>2°</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SECA</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Ciprinicole</td>
<td>Ciprinicola</td>
<td>Ciprinicola</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>

Non si registrano variazioni della qualità dell’acqua.

I valori di concentrazione dell’azoto ammoniacale, dell’ammoniaca libera e del cloro residuo totale a livelli bassi, testimoniano scarsa pressione antropica sul
corso d'acqua da insediamenti civili e industriali, se si considera la scarsa recettività dello stesso corso d'acqua.

La stazione monitorata presenta uno stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

Il bacino idrografico del fiume Aso

![Bacino Idrografico del f. Aso](image)

Fig. 3. Qualità delle acque del fiume Aso lungo il suo percorso, anno 2006

L'istogramma di fig. 3, mette in evidenza la variazione della qualità dell'acqua del f. Aso lungo il suo corso. Come si può osservare, lo stato ecológico è “buono” tranne che negli ultimi chilometri del suo percorso, dove l'antropizzazione, come negli altri bacini idrografici della provincia, è più elevata.

Nella zona non sono presenti pressioni antropiche di rilievo; non si riscontrano infatti insediamenti industriali e grossi centri abitativi. Si annota la presenza di un allevamento avicolo di modeste dimensioni i cui effluenti zootecnici vengono conferiti a terzi.

L'attività è prevalentemente agricola e si registra un modesto incremento di residenti nella stagione estiva dovuto al turismo.

Nel 2006 sono stati effettuati nell'ambito della Convenzione stipulata con la Provincia e l'Istituto Superiore di Sanità, 6 prelievi che hanno interessato la colonna d'acqua nel punto di maggiore profondità del lago utilizzando l'imbarcazione del locale Consorzio di Bonifica.
Dai risultati ottenuti si delinea uno stato ecologico corrispondente alla classe 3 (sufficiente), confermando la situazione dell’anno precedente. Si è verificato un peggioramento di una classe, rispetto al 2004, dovuto alla scarsa trasparenza delle acque nel primo periodo dell’anno, come conseguenza delle abbondanti piogge e nevicate verificatesi in quel periodo.

Già nel mese di maggio è stato verificato lo stato di massima stratificazione (prelievo del 18.05.06), quando sul fondo del lago, alla profondità di circa 50 metri, si è registrata la temperatura di 5,5°C contro 16,5°C in superficie. Nel mese di settembre il tenore di ossigeno dischiolto sul fondo era di appena 1% di saturazione contro il valore di 95 in superficie.

In assenza di ossigeno dischiolto sul fondo del lago si innescano fermentazioni anaerobiche con produzione di specie chimiche quali l’acido solfidrico e l’ammoniaca che diffondendo in superficie vengono entrambe ossidate a solfati e nitrati. Forse per questo motivo la concentrazione dei solfati nelle acque del lago è significativamente più elevata di quella presente nelle acque dell’immissario. Non si esclude, tuttavia, un contributo derivante da qualche sorgente solfurea presente sul fondo del lago e intercettata dalla diga.

L’andamento temporale del tenore dell’alga tossica (Rubescens) è di tipo sinusoidale con valori elevati al di sopra dei 5.000 cellule /ml durante i mesi primaverili, quando la temperatura del lago inizia a salire.

E’ stata stipulata una convenzione tra Provincia di Ascoli P., Istituto Superiore di Sanità, Arpam, Consorzio di Bonifica dell’Aso e Corpo Forestale dello Stato per monitorare le acque del lago di Gerosa, in particolare per monitorare la microcistina per via strumentale (cromatografia liquido –liquido) in modo da adeguare i provvedimenti sindacali alle effettive condizioni di rischio basate sulla presenza nell'acqua dell'elemento tossico e non soltanto dell’alga.

Stazione 2/AS (ecotipo appenninico / zona ad erosione). Stazione sita tra il lago artificiale di Gerosa (capacità di accumulo di 12 milioni di m3) ed il bacino idrico a scopo idroelettrico di Villa Pera (capacità di accumulo di 700.000 m3).

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>9/8</td>
<td>9</td>
<td>10</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>II</td>
<td>II</td>
<td>I</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>SECA</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>II</td>
<td>II</td>
<td>II</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Salmonicole</td>
<td>Salmonicole</td>
<td>Salmonicole</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>
La stazione mantiene negli anni una qualità ecologica (SECA) di valore 1 - 2; si tratta di acqua di buone condizioni sia negli aspetti analitici, sia nelle caratteristiche delle comunità biologiche.

Zona caratterizzata da scarsa pressione antropica da insediamenti civili e industriali. Sono presenti allevamenti avicolari di cui soltanto uno di consistenza meritevole di attenzione ai fini dell'impatto sull'ambiente circostante. Durante la stagione estiva si registra un incremento di residenti per effetto dell'attività turistica, tuttavia ciò non si ripercuote in modo sensibile sullo stato ecologico ambientale dei luoghi.

La stazione monitorata presenta uno stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

Stazione 5/AS (ecotipo pede appenninico) Collina litoranea irrigua.

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>2°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SECA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>Ciprinicole</td>
<td>a migliorare(↑)</td>
</tr>
</tbody>
</table>

Si registra nel 2006 una situazione stazionaria circa la qualità del corso d’acqua a “sufficiente”. Il livello dei macrodescrittori è rimasto stazionario a “buono”.

Dai valori di concentrazione dell’azoto ammoniacale, dell’ammoniaca libera e dei nitrati risulta che il tratto di fiume in esame è soggetto a pressione antropica da insediamenti civili e la capacità di autodepurazione del fiume è buona.

Anche nel 2006 si sono verificati sensibili fluttuazioni nei valori di concentrazione dell’azoto ammoniacale da attribuire a sversamenti di effluenti zootecnici provenienti dai numerosi allevamenti presenti nella zona a monte.

Il miglioramento della qualità dell’acqua al livello “buono” può essere perseguito con una migliore depurazione dei reflui urbani e domestici e una migliore gestione degli effluenti zootecnici.

La stazione monitorata presenta uno stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.

Stazione 6/AS ecotipo pedeappenninico –Zona a deposito Chiusura di bacino idrografico La stazione è sita fra il nuovo depuratore comunale reflui urbani

Le indagini analitiche effettuate nel corso del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>3°</td>
<td>2°</td>
<td>2</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>7/6</td>
<td>7</td>
<td>6</td>
<td>a peggiorare(↓)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SECA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>SACA</td>
<td>III</td>
<td>III</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Non idonea</td>
<td>Non idonea</td>
<td>Non idonea</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>

Le acque risultano non idonee per la vita dei pesci in quanto i parametri azoto ammoniacale e ammoniaca indissociata presentano valori di concentrazione superiori ai rispettivi limiti di accettabilità.

Dai valori di concentrazione dell’azoto ammoniacale, dell’ammoniaca libera e dei nitrati risulta che il tratto di fiume in esame è soggetto a pressione antropica da insediamenti civili e la capacità di autodepurazione del fiume è buona.

Gli scarichi dei reflui urbani non depurati dell’abitato di Pedaso peggiorano la qualità dell’acqua anche dal punto di vista microbiologico, a causa anche della scarsa recettività del fiume in quel tratto.

Il miglioramento della qualità dell’acqua al livello “buono”, idoneo anche al recupero delle condizioni per la vita dei ciprinidi può essere perseguito con una migliore depurazione dei reflui urbani. La stazione monitorata presenta una stato di qualità conforme agli obiettivi prefissati dalla normativa vigente per il 2008.
CORSI D’ACQUA NON SIGNIFICATIVI

Torrente Ete Vivo

Torrente non significativo (bacino idrografico di 180 Km2) ma con influenza negativa sulla destinazione d’uso delle acque del corpo recettore (Mare Adriatico).

Il degrado del corso d’acqua è comunque molto elevato e, nel periodo estivo, risulta pressoché alimentato da reflui soprattutto urbani, depurati e non.

E’ caratterizzato da scarsissima recettività

Essendo un bacino idrografico poco significativo, il monitoraggio è mirato al controllo degli apporti del fiume al litorale Adriatico, zona sensibile importante per la balneazione e per i rischi di eutrofizzazione.

I comuni interessati a questo bacino sono Fermo e P.S.Giorgio.

L’analisi dei dati che riguardano i parametri macrodescrittori mette in evidenza un livello di qualità “pessimo” per il tratto oggetto di monitoraggio. Tali dati mostrano chiaramente un inquinamento caratteristico di insediamenti urbani e industriali;

Le acque sono caratterizzate da elevato grado di fecalizzazione che provocano, con la complicità della scarsissima recettività, un deterioramento della qualità delle acque, alla quinta classe anche per quanto riguarda i macrodescrittori.

Le indagini analitiche del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livello LIM</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>2</td>
<td>2</td>
<td>3/4</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>stazionaria (÷)</td>
</tr>
<tr>
<td>SECA</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>stazionaria (÷)</td>
</tr>
<tr>
<td>SACCA</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>stazionaria (÷)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>stazionaria (÷)</td>
</tr>
</tbody>
</table>

Sono stati superati in quasi tutte le determinazioni eseguite i limiti imperativi relativamente al HCL0 e all’azoto ammoniacale.
Lo stato di qualità delle sue acque è una conseguenza della scarsa recettività e scarsa velocità del flusso idrico.

Torrente Tesino

Torrente non significativo (bacino idrografico =120 Km2) ma, anche questo, con influenza negativa sulla destinazione d’uso del corpo recettore (mare Adriatico). Non sono disponibili dati sulle portate naturali. Oltre agli usi zootecnici risultano significativi gli attingimenti idrici ad uso industriale e agricolo. Il degrado del corso d’acqua è comunque molto elevato. Nel periodo estivo risulta in secca ed alimentato, nella sua parte terminale, (circa due chilometri dalla costa) esclusivamente dai reflui urbani ed industriali.

Il suo tratto iniziale subisce, per almeno due chilometri, un impatto devastante in quanto recapito di effluenti zootecnici che ne degradano la qualità dello stato ecologico a livelli veramente bassi.

Il recupero dello stato di qualità del corso d’acqua nel suo tratto iniziale è facilmente perseguiibile impedendo l’immissione degli effluenti zootecnici provenienti dalla vicino e sovrastante allevamento suinicolo.

Le indagini analitiche del 2006 rilevano:

<table>
<thead>
<tr>
<th>Indicatori qualità</th>
<th>Monitoraggio 2004</th>
<th>Monitoraggio 2005</th>
<th>Monitoraggio 2006</th>
<th>Tendenza</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIM</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Indice IBE</td>
<td>4/5</td>
<td>4/5</td>
<td>7</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>Classe IBE</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>SECA</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>a migliorare(↑)</td>
</tr>
<tr>
<td>SACA</td>
<td>IV</td>
<td>IV</td>
<td>III</td>
<td>stazionaria (+)</td>
</tr>
<tr>
<td>Vita dei pesci</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>Non idonee</td>
<td>stazionaria (+)</td>
</tr>
</tbody>
</table>

Lo stato ecologico fa registrare un miglioramento al livello III “sufficiente” rispetto al 2004, sebbene il corso d’acqua sia caratterizzato ancora da stati di secca totale, durante la stagione estiva, a monte delle immissioni sull’alveo dei reflui urbani depurati e di qualche scarico industriale.

Frequenti superamenti sono stati registrati per l’azoto ammoniacale, nitroso, HClO.